Skip to main content
Log in

Computing short-time aircraft maneuvers using direct methods

  • Control Systems of Moving Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

This paper analyzes the applicability of direct methods to design optimal short-term spatial maneuvers for an unmanned vehicle in a faster than real-time scale. It starts by introducing different basic control schemes, which employ online trajectory generation. Next, it presents and analyzes the results obtained through two recently developed direct transcription (collocation) methods: the Gauss pseudospec-tral method and the Legendre-Gauss-Lobatto pseudosp ectral method. The achieved results are further compared with those found through the Pontryagin’s Maximum (Minimum) Principle, and the paper continues by providing another set of direct method simulations incorporating more realistic boundary conditions. Finally, the results obtained using the third direct method, based on inverse dynamics in the virtual domain, are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kaminer, O. Yakimenko, V. Dobrokhodov, et al., “Coordinated Path Following for Time-Critical Missions of Multiple UAVs via L1 Adaptive Output Feed-back Controllers”, in Proceedings of AIAA Guidance, Navigation and Control Conference, American Institute of Aeronautics and Astronautics, Hilton Head, 2007).

    Google Scholar 

  2. V. T. Taranenko, Experience of Employing Ritz’s, Poincare’s, and Lyapunov’s Methods for Solving Flight Dynamics Problems (Air Force Engineering Academy, Moscow, 1968).

    Google Scholar 

  3. V. T. Taranenko and V. G. Momdzhi, Direct Method of Calculus of Variations in Boundary Problems of Flight Dynamics (Maschinostroenie, Moscow, 1986).

    Google Scholar 

  4. B. Geiger, J. Horn, A. DeLullo, et al., “Optimal Path Planning of UAVs Using Direct Collocation with Nonlinear Programming”, in Proceedings AIAA Guidance, Navigation and Control Conference (American Institute of Aeronautics and Astronautics, Keystone, 2006).

    Google Scholar 

  5. B. Geiger, J. Horn, G. Sinsley, et al., “Flight Testing a Real Time Implementation of a UAV Path Planner Using Direct Collocation”, in Proceedings of AIAA Guidance, Navigation and Control Conference (American Institute of Aeronautics and Astronautics, Hilton Head, 2007).

    Google Scholar 

  6. O. A. Yakimenko, “Direct Methods for Rapid Prototyping of Near-Optimal Aircraft Trajectories”, J. Guidance, Control, and Dynamics 23(5), 865–875.

  7. D. A. Benson, G. T. Huntington, T. P. Thorvaldsen, et al., “Direct Trajectory Optimization and Costate Estimation via An Orthogonal Collocation Method”, J. Guidance, Control, and Dynamics 29(6), 1435–1440 (2006).

    Article  Google Scholar 

  8. F. Fahroo and I. M. Ross, “Costate Estimation by a Legendre Pseudospectral Method”, J. Guidance, Control, and Dynamics 24(2), 270–277 (2001).

    Article  Google Scholar 

  9. F. Fahroo and I. M. Ross, “Direct Trajectory Optimization by a Chebyshev Pseudospectral Method”, J. Guidance, Control, and Dynamics 25(1), 160–166 (2002).

    Article  Google Scholar 

  10. I. M. Ross and F. Fahroo, “Pseudospectral Knotting Methods for Solving Nonsmooth Optimal Control Problems”, J. Guidance, Control, and Dynamics 27(3), 397–405 (2004).

    Article  Google Scholar 

  11. G. T. Huntington, D. A. Benson, and A. V. Rao, “A Comparison of Accuracy and Computational Efficiency of Three Pseudospectral Methods”, in Proceedings of AIAA Guidance, Navigation and Control Conference (American Institute of Aeronautics and Astronautics, Hilton Head, 2007).

    Google Scholar 

  12. A. V. Rao, User’s Manual for GPOCS Version 1.1 (University of Florida, Gainesville, 2007).

    Google Scholar 

  13. I. M. Ross, User’s Manual for DIDO: A MATLAB Application Package for Solving Optimal Control Problems (TOMLAB Optimization, Pullman, 2004).

    Google Scholar 

  14. L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze, et al., The Mathematical Theory of Optimal Processes (Pergamon, New York, 1964).

    MATH  Google Scholar 

  15. A. E. Bryson, Jr., Dynamic Optimization(Addison Wesley, Menlo Park, 1999).

    Google Scholar 

  16. D. Kirk, Optimal Control Theory: An Introduction (Dover, New York, 2004).

    Google Scholar 

  17. A. I. Neljubov, Mathematical Methods of Calculation of Combat, Takeoff/Climbing, and Landing Approach Maneuvers for An Aircraft with a 2-D Thrust Vectoring (Air Force Engineering Academy, Moscow, 1986).

    Google Scholar 

  18. O. Yakimenko and N. Slegers, “Using Direct Methods for Terminal Guidance of Autonomous Aerial Delivery Systems,” in Proceedings of European Control Conference, Budapest, Hungary, 2009.

  19. O. A. Yakimenko, “Real-Time Computation of Spatial and Flat Obstacle Avoidance Trajectories for UUVs,” in Proceedings of 2nd IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUVO08), Killaloe, Ireland, 2008.

    Google Scholar 

  20. J. Lukacs and O. Yakimenko, “Trajectory-Shaping Guidance for Interception of Ballistic Missiles During the Boost Phase”, Journal of Guidance, Control, and Dynamics 31(5), 1524–1531 (2008).

    Article  Google Scholar 

  21. B. Eikenberry, O. Yakimenko, and M. Romano, “A Vision Based Navigation Among Multiple Flocking Robots: Modeling and Simulation”, in Proceedings of AIAA Modeling and Simulation Technologies Conference (American Institute of Aeronautics and Astronautics, Keystone, 2006).

    Google Scholar 

  22. R. Bevilacqua, M. Romano, and O. Yakimenko, “Online Generation of Quasi-Optimal Spacecraft Rendezvous Trajectories”, Acta Astronaut. 64(2–3), 345–358 (2009).

    Article  Google Scholar 

  23. J. F. Whidborne, I. D. Cowling, and O. A. Yakimenko, “A Direct Method for UAV Guidance and Control,” in Proceedings of 23rd International Unmanned Air Vehicle Systems (UAVS) Conference, Bristol. UK, University of Bristol, Bristol, 2008.

  24. A. E. Bryson, Jr. and Y-C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, (Taylor and Franc, Levittown, 1975).

    Google Scholar 

  25. S. A. Forth, “An Efficient Overloaded Implementation of Forward Mode Automatic Differentiation in MATLAB”, ACM Trans. Math. Software 32(2), 195–222 (2006).

    Article  MathSciNet  Google Scholar 

  26. S. A. Forth and M. M. Edvall, User Guide for MAD- a Matlab Automatic Differentiation Toolbox TOMLAB/MAD Version, 4, The Forward Mode (TOMLAB Optimization, Pullman, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G. Basset, Y. Xu, O.A. Yakimenko, 2010, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2010, No. 3, pp. 145–176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basset, G., Xu, Y. & Yakimenko, O.A. Computing short-time aircraft maneuvers using direct methods. J. Comput. Syst. Sci. Int. 49, 481–513 (2010). https://doi.org/10.1134/S1064230710030159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230710030159

Keywords

Navigation