Skip to main content
Log in

Review of dynamic soaring: technical aspects, nonlinear modeling perspectives and future directions

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a comprehensive and detailed review of dynamic soaring process, and in particular, its application to unmanned aerial vehicles (UAVs). We start by explaining the biological inspiration that comes from soaring birds and how researchers have tried to utilize the dynamic soaring phenomenon/maneuver and apply it to UAVs. We present and discuss the fundamentals of wind shear models in both the linear and nonlinear cases. Moreover, a comprehensive parametric characterization of the key performance parameters for the dynamic soaring maneuver is given. Numerical methods for nonlinear trajectory optimization are summarized and methodologies capable of generating rapid solutions suitable for real-time implementation, are presented. Additionally, the paper introduces mathematical modeling and procedure to generate the optimized dynamic soaring trajectory. Through this paper, a consolidated platform is built, which not only covers technical aspects of advancements made over the passage of time, but also identifies and discusses the existing challenges. These challenges which are encountered by UAVs curtail the potential utility of dynamic soaring. Integrating dynamic soaring with morphology and inclusion of nonlinear control theory in the flight control system are introduced as a possible future research directions that may overcome the existing limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

UAV:

Unmanned aerial vehicle

sUAV:

Small unmanned aerial vehicle

V :

True air speed

\(\gamma \) :

Flight path angle

\(\psi \) :

Azimuth measured clockwise from the y-axis

x :

Position vector along east direction

y :

Position vector along north direction

h :

Altitude

\(\alpha _{L\,=\,0}\) :

Angle of attack at zero lift

b :

Wing span

\(\Lambda \) :

Sweep angle

\(C_\mathrm{L}\) :

Lift coefficient

\(\phi \) :

Bank angle

\(C_\mathrm{D}\) :

Drag coefficient

E :

Energy

M :

Mass of the vehicle

g :

Acceleration due to gravity

\(V_\mathrm{w}\) :

Wind velocity

n :

Load factor

\(n_{\max }\) :

Maximum load factor

\((.)_{\max }\) :

Maximum value of the variable

\((.)_{\min }\) :

Minimum value of the variable

\(t_\mathrm{o}\) :

Initial time

\(t_\mathrm{f}\) :

Final time

\((.)_{\mathrm{t}_{o}}\) :

Variable value at initial time

\((.)_{\mathrm{t}_{f}}\) :

Variable value at final time

\(\dot{(\cdot )}\) :

First-order time derivative

\(V_\mathrm{ref}\) :

Reference wind speed

\(h_\mathrm{ref}\) :

Reference altitude

\(h_{o}\) :

Surface correctness factor

\(c_{\mathrm{l}_{\alpha }}\) :

Lift curve slope of airfoil

\(C_{\mathrm{D}_{o}}\) :

Zero lift drag coefficient

\(\rho \) :

Density of the air

n :

Load factor

S :

Wing area

K :

Induced drag factor

AR :

Aspect ratio of the wing

L / D :

Lift-to-drag ratio

m:

meter

m/s:

meter per sec

s:

second

kg:

kilogram

\({}^{\circ }\) :

degree

NLP:

Non linear programming

IPOPT:

Interior point optimization

GPOPS:

General purpose optimal control software

\(f(\varvec{x})\) :

Drift vector

g :

Control input field

V1,V2:

Lie bracket between vector V1 and V2

LARC :

Lie algebraic rank condition

References

  1. Wilson, J.: Sweeping flight and soaring by albatrosses. Nature 257(5524), 307–308 (1975)

    Google Scholar 

  2. Richardson, P.L.: How do albatrosses fly around the world without flapping their wings? Prog. Oceanogr. 88(1), 46–58 (2011)

    Google Scholar 

  3. Denny, M.: Dynamic soaring: aerodynamics for albatrosses. Eur. J. Phys. 30(1), 75 (2008)

    Google Scholar 

  4. Sachs, G., Traugott, J., Nesterova, A., Bonadonna, F.: Experimental verification of dynamic soaring in albatrosses. J. Exp. Biol. 216(22), 4222–4232 (2013)

    Google Scholar 

  5. Pennycuick, C.: The flight of petrels and albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 300(1098), 75–106 (1982)

    Google Scholar 

  6. Sachs, G., Traugott, J., Nesterova, A.P., Dell’Omo, G., Kümmeth, F., Heidrich, W., Vyssotski, A.L., Bonadonna, F.: Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses. PLoS ONE 7(9), e41449 (2012)

    Google Scholar 

  7. Croxall, J.P., Silk, J.R., Phillips, R.A., Afanasyev, V., Briggs, D.R.: Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses. Science 307(5707), 249–250 (2005)

    Google Scholar 

  8. Austin, R.: Unmanned Aircraft Systems: UAVS Design, Development and Deployment, vol. 54. Wiley, Hoboken (2011)

    Google Scholar 

  9. Langelaan, J.W., Roy, N.: Enabling new missions for robotic aircraft. Science 326(5960), 1642–1644 (2009)

    Google Scholar 

  10. Akhtar, N., Whidborne, J.F., Cooke, A.K.: Wind Shear Energy Extraction Using Dynamic Soaring Techniques. American Institute of Aeronautics and Astronautics AIAA, Reston (2009)

    Google Scholar 

  11. Grenestedt, J.L., Spletzer, J.R.: Optimal Energy Extraction During Dynamic Jet Stream Soaring. In: AIAA Guidance, Navigation, and Control Conference (2010)

  12. Patel, C., Lee, H.-T., Kroo, I.: Extracting energy from atmospheric turbulence with flight tests. Tech. Soar. 33(4), 100–108 (2009)

    Google Scholar 

  13. Grenestedt, J.L., Spletzer, J.R.: Towards perpetual flight of a gliding unmanned aerial vehicle in the jet stream. 2010 49th IEEE Conference on Decision and Control (CDC), IEEE, pp. 6343–6349 (2010)

  14. Cone, C.D.: Thermal soaring of birds. Am. Sci. 50(1), 180–209 (1962)

    Google Scholar 

  15. Raspet, A.: Biophysics of bird flight. Science 132(3421), 191–200 (1960)

    Google Scholar 

  16. Boslough, M.B.: Autonomous dynamic soaring platform for distributed mobile sensor arrays, Sandia National Laboratories, Sandia National Laboratories, Tech. Rep. SAND2002-1896 (2002)

  17. Wood, C.: The flight of albatrosses (a computer simulation). Ibis 115(2), 244–256 (1973)

    Google Scholar 

  18. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guidance Control Dyn. 21(2), 193–207 (1998)

    MATH  Google Scholar 

  19. Gao, X.-Z., Hou, Z.-X., Guo, Z., Chen, X.-Q.: Energy extraction from wind shear: reviews of dynamic soaring. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229(12), 2336–2348 (2015)

    Google Scholar 

  20. Idrac, M.: Contributions à l’étude duvol des albatros. CR Acad. Sci. Paris 179, 28–30 (1924)

    Google Scholar 

  21. Idrac, P.: Experimental study of the soaring of albatrosses. Nature 115(2893), 532–532 (1925)

    Google Scholar 

  22. Walkden, S.: Experimental study of the soaring of albatrosses. Nature 116(2908), 25 (1925)

    Google Scholar 

  23. Pennycuick, C.: Gliding flight of the fulmar petrel. J. Exp. Biol. 37(2), 330–338 (1960)

    Google Scholar 

  24. Pennycuick, C.: Mechanics of flight. Avian Biol. 5, 1–75 (1975)

    Google Scholar 

  25. Pennycuick, C.: Power requirements for horizontal flight in the pigeon Columba livia. J. Exp. Biol. 49(3), 527–555 (1968)

    Google Scholar 

  26. Tucker, V.A., Parrott, G.C.: Aerodynamics of gliding flight in a falcon and other birds. J. Exp. Biol. 52(2), 345–367 (1970)

    Google Scholar 

  27. Hargrave, L.: Sailing Birds are Dependent on Wave-power (1899)

  28. Jouventin, P., Weimerskirch, H.: Satellite tracking of wandering albatrosses. Nature 343(6260), 746–748 (1990)

    Google Scholar 

  29. Prince, P., Wood, A., Barton, T., Croxall, J.: Satellite tracking of wandering albatrosses (Diomedea exulans) in the South Atlantic. Antarct. Sci. 4(1), 31–36 (1992)

    Google Scholar 

  30. Alerstam, T., Gudmundsson, G.A., Larsson, B.: Flight tracks and speeds of Antarctic and Atlantic seabirds: radar and optical measurements. Philos. Trans. R. Soc. Lond. B Biol. Sci. 340(1291), 55–67 (1993)

    Google Scholar 

  31. Tuck, G.N., Polacheck, T., Croxall, J., Weimerskirch, H., Prince, P., Wotherspoon, S.: The potential of archival tags to provide long-term movement and behaviour data for seabirds: first results from Wandering Albatross Diomedea exulans of South Georgia and the Crozet Islands. Emu 99(1), 60–68 (1999)

    Google Scholar 

  32. Weimerskirch, H., Wilson, R.P.: Oceanic respite for wandering albatrosses. Nature 406(6799), 955–956 (2000)

    Google Scholar 

  33. Nel, D., Ryan, P.G., Nel, J.L., Klages, N.T., Wilson, R.P., Robertson, G., Tuck, G.N., et al.: Foraging interactions between Wandering Albatrosses Diomedea exulans breeding on Marion Island and long-line fisheries in the southern Indian Ocean. Ibis 144(3), 141–154 (2002)

    Google Scholar 

  34. Weimerskirch, H., Bonadonna, F., Bailleul, F., Mabille, G., Dell’Omo, G., Lipp, H.-P.: GPS tracking of foraging albatrosses. Science 295(5558), 1259–1259 (2002)

    Google Scholar 

  35. Wakefield, E.D., Phillips, R.A., Matthiopoulos, J., Fukuda, A., Higuchi, H., Marshall, G.J., Trathan, P.N.: Wind field and sex constrain the flight speeds of central-place foraging albatrosses. Ecol. Monogr. 79(4), 663–679 (2009)

    Google Scholar 

  36. Weimerskirch, H., Guionnet, T., Martin, J., Shaffer, S.A., Costa, D.: Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc. R. Soc. Lond. B Biol. Sci. 267(1455), 1869–1874 (2000)

    Google Scholar 

  37. Bevan, R., Woakes, A., Butler, P., Boyd, I.: The use of heart rate to estimate oxygen consumption of free-ranging black-browed albatrosses Diomedea melanophrys. J. Exp. Biol. 193(1), 119–137 (1994)

    Google Scholar 

  38. Rosén, M., Hedenstrom, A.: Gliding flight in a jackdaw: a wind tunnel study. J. Exp. Biol. 204(6), 1153–1166 (2001)

    Google Scholar 

  39. MacCready, P.B.: Optimum airspeed selector. Soaring (January–February), vol. 10(11) (1958)

  40. Gordon, R.J.: Optimal dynamic soaring for full size sailplanes, Tech. rep., Air Force Inst of Tech Wright-Patterson AFB oh Dept of Aeronautics and Astronautics (2006)

  41. Ariff, O., Go, T.: Waypoint navigation of small-scale UAV incorporating dynamic soaring. J. Navig. 64(1), 29–44 (2011)

    Google Scholar 

  42. Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans. Math. Softw. (TOMS) 37(2), 22 (2010)

    MATH  Google Scholar 

  43. Stull, R.B.: An Introduction to Boundary Layer Meteorology, vol. 13. Springer, Berlin (2012)

    MATH  Google Scholar 

  44. Kaimal, J.C., Finnigan, J.J.: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford (1994)

    Google Scholar 

  45. Wharington, J.M.: Heuristic control of dynamic soaring. In: Control Conference, 2004. 5th Asian, Vol. 2, IEEE, pp. 714–722 (2004)

  46. Lawrance, N.R., Sukkarieh, S.: A guidance and control strategy for dynamic soaring with a gliding UAV. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09. IEEE, pp. 3632–3637 (2009)

  47. Idrac, P., Georgii, W.: Experimentelle Untersuchungen über den Segelflug, mitten im Fluggebiet grosser Segelnder Vögel (Geier, Albatros usw). Ihre Anwendung auf den Segelflug des Menschen...[Einleitung von Walter Georgii.]. R. Oldenbourg (1932)

  48. Pennycuick, C.J.: Gust soaring as a basis for the flight of petrels and albatrosses (Procellariiformes). Avian Sci. 2(1), 1–12 (2002)

    Google Scholar 

  49. Sachs, G.: Minimum shear wind strength required for dynamic soaring of albatrosses. Ibis 147(1), 1–10 (2005)

    Google Scholar 

  50. Sachs, G., da Costa, O.: Optimization of dynamic soaring at ridges. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit pp. 11–14 (2003)

  51. Ariff, O., Go, T.: Dynamic soaring of small-scale UAVs using differential geometry. In: Proceedings of International Bhurban Conference on Applied Sciences and Technology (2010)

  52. Zhao, Y.J.: Optimal patterns of glider dynamic soaring. Optim. Control Appl. Methods 25(2), 67–89 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Barnes, J.P.: How flies the albatross–the flight mechanics of dynamic soaring. Tech. rep., SAE Technical Paper (2004)

  54. Richardson, P.L.: Upwind dynamic soaring of albatrosses and UAVs. Prog. Oceanogr. 130, 146–156 (2015)

    Google Scholar 

  55. Abdulrahim, M.: Flight dynamics and control of an aircraft with segmented control surfaces. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, pp. 2004–0128

  56. Wickenheiser, A.M., Garcia, E.: Optimization of perching maneuvers through vehicle morphing. J. Guidance Control Dyn. 31(4), 815–823 (2008)

    Google Scholar 

  57. Akhtar, N.: Control system development for autonomous soaring (2010)

  58. Sukumar, P.P., Selig, M.S.: Dynamic soaring of sailplanes over open fields. J. Aircr. 50(5), 1420–1430 (2013)

    Google Scholar 

  59. Lawrance, N., Acevedo, J., Chung, J., Nguyen, J., Wilson, D., Sukkarieh, S.: Long endurance autonomous flight for unmanned aerial vehicles. AerospaceLab 8, 1 (2014)

    Google Scholar 

  60. Mir, I., Maqsood, A., Eisa, S.A., Taha, H., Akhtar, S.: Optimal morphing-augmented dynamic soaring maneuvers for unmanned air vehicle capable of span and sweep morphologies. Aerosp. Sci. Technol. 79(1), 17–36 (2018)

    Google Scholar 

  61. Berger, M., Göhde, W.: Zur Theorie des Segelfluges von Vögeln über dem Meere. Zool. Jb. Physiol 71, 217–224 (1965)

    Google Scholar 

  62. Bonnin, V., Bénard, E., Moschetta, J.-M., Toomer, C.: Energy-harvesting mechanisms for UAV flight by dynamic soaring. Int. J. Micro Air Veh. 7(3), 213–229 (2015)

    Google Scholar 

  63. DSKinetic Kernel Description. http://www.dskinetic.com/, Accessed (2019)

  64. Gao, X.-Z., Hou, Z.-X., Guo, Z., Fan, R.-F., Chen, X.-Q.: Analysis and design of guidance-strategy for dynamic soaring with UAVs. Control Eng. Pract. 32, 218–226 (2014)

    Google Scholar 

  65. Deittert, M., Richards, A., Toomer, C., Pipe, A.: Dynamic soaring flight in turbulence. In: AIAA Guidance, Navigation and Control Conference, Chicago, Illinois, pp. 2–5 (2009)

  66. Mir, I., Maqsood, A., Akhtar, S.: Optimization of dynamic soaring maneuvers for a morphing capable UAV. In: AIAA Information Systems-AIAA Infotech@ Aerospace, p. 0678 (2017)

  67. Sachs, G., Mayrhofer, M.: Shear wind strength required for dynamic soaring at ridges. Tech. Soar. 25(4), 209–215 (2001)

    Google Scholar 

  68. Zhao, Y.J., Qi, Y.C.: Minimum fuel powered dynamic soaring of unmanned aerial vehicles utilizing wind gradients. Optim. Control Appl. Methods 25(5), 211–233 (2004)

    MathSciNet  MATH  Google Scholar 

  69. Fırtın, E., Güler, Ö., Akdağ, S.A.: Investigation of wind shear coefficients and their effect on electrical energy generation. Appl. Energy 88(11), 4097–4105 (2011)

    Google Scholar 

  70. Shen, X., Zhu, X., Du, Z.: Wind turbine aerodynamics and loads control in wind shear flow. Energy 36(3), 1424–1434 (2011)

    Google Scholar 

  71. Liu, D.-N., Hou, Z.-X., Guo, Z., Yang, X.-X., Gao, X.-Z.: Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring. Bioinspir. Biomim. 12(1), 016014 (2017)

    Google Scholar 

  72. Langelaan, J.W., Spletzer, J., Montella, C., Grenestedt, J.: Wind field estimation for autonomous dynamic soaring. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 16–22 (2012)

  73. Bencatel, R., Girard, A., Abdelhafiz, M., Sousa, J.: Shear wind estimation (2011)

  74. Lawrance, N.R.: Autonomous soaring flight for unmanned aerial vehicles. Ph.D. Thesis, University of Sydney (2011)

  75. Akhtar, N., Whidborne, J., Cooke, A.: Real-time optimal techniques for unmanned air vehicles fuel saving. Proc. Instit. Mech. Eng. Part G J. Aerosp. Eng. 226(10), 1315–1328 (2012)

    Google Scholar 

  76. Akhtar, N., Cooke, A.K., Whidborne, J.F.: Positioning algorithm for autonomous thermal soaring. J. Aircr. 49(2), 472–482 (2012)

    Google Scholar 

  77. Sachs, G., Grüter, B.: Dynamic soaring- kinetic energy and inertial speed. In: AIAA Atmospheric Flight Mechanics Conference, p. 1862 (2017)

  78. Sachs, G., da Costa, O.: Dynamic soaring in altitude region below jet streams. In: AIAA Guidance, Navigation and Control Conference, no. AIAA Paper vol. 6602, pp. 21–24 (2006)

  79. Bousquet, G.D., Triantafyllou, M.S., Slotine, J.-J.E.: Optimal dynamic soaring consists of successive shallow arcs. J. R. Soc. Interface 14(135), 20170496 (2017)

    Google Scholar 

  80. Silva, W., Frew, E.W.: Experimental assessment of online dynamic soaring optimization for small unmanned aircraft. AIAA SciTech Forum, 2016, pp. 2016–0252

  81. Bower, G.C.: Boundary layer dynamic soaring for autonomous aircraft: design and validation. Ph.D. thesis, Stanford University Stanford (2011)

  82. Sachs, G.: Optimal wind energy extraction for dynamic soaring. In: Miele, A., Salvetti, A. (eds.) Applied Mathematics in Aerospace Science and Engineering. Mathematical Concepts and Methods in Science and Engineering, vol. 44, pp. 221–237. Springer, Boston, MA (1994)

    Google Scholar 

  83. Shaw-Cortez, W.E., Frew, E.: Efficient trajectory development for small unmanned aircraft dynamic soaring applications. J. Guidance Control Dyn 38, 519–523 (2015)

    Google Scholar 

  84. Kahveci, N.E., Ioannou, P.A.: Adaptive steering control for uncertain ship dynamics and stability analysis. Automatica 49(3), 685–697 (2013)

    MathSciNet  MATH  Google Scholar 

  85. Zhang, L., Gao, H., Chen, Z., Sun, Q., Zhang, X.: Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method. Nonlinear Dyn. 72(1–2), 1–8 (2013)

    MathSciNet  MATH  Google Scholar 

  86. Cheng, X., Li, H., Zhang, R.: Autonomous trajectory planning for space vehicles with a Newton-Kantorovich/convex programming approach. Nonlinear Dyn. 89(4), 2795–2814 (2017)

    MathSciNet  MATH  Google Scholar 

  87. Ghasemi, S., Nazemi, A., Hosseinpour, S.: Nonlinear fractional optimal control problems with neural network and dynamic optimization schemes. Nonlinear Dyn. 89(4), 2669–2682 (2017)

    MathSciNet  MATH  Google Scholar 

  88. Qiu, H., Duan, H.: Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dyn. 78(3), 1973–1988 (2014)

    Google Scholar 

  89. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1), 497–528 (2009)

    Google Scholar 

  90. Bellman, R.: Dynamic Programming. Princeton Univ, Princeton (1957)

    MATH  Google Scholar 

  91. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)

    MathSciNet  MATH  Google Scholar 

  92. Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The mathematical theory of optimal processes (Russian), English translation by KN Trirogoff, ed. by LW Neustadt (1962)

  93. Gerdts, M.: Direct shooting method for the numerical solution of higher-index DAE optimal control problems. J. Optim. Theory Appl. 117(2), 267 (2003)

    MathSciNet  MATH  Google Scholar 

  94. Diedam, H., Sager, S.: Global optimal control with the direct multiple shooting method. Optim. Control Appl. Methods 39, 449–470 (2016)

    MathSciNet  MATH  Google Scholar 

  95. Cannataro, B.Ş., Rao, A.V., Davis, T.A.: State-defect constraint pairing graph coarsening method for Karush-Kuhn-Tucker matrices arising in orthogonal collocation methods for optimal control. Comput. Optim. Appl. 64(3), 793–819 (2016)

    MathSciNet  MATH  Google Scholar 

  96. Huntington, G.T., Rao, A.V.: Comparison of global and local collocation methods for optimal control. J. Guidance Control Dyn. 31(2), 432 (2008)

    Google Scholar 

  97. Schwartz, A.L.: Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems. Ph.D. thesis, University of California, Berkeley (1996)

  98. Reddien, G.: Collocation at Gauss points as a discretization in optimal control. SIAM J. Control Optim. 17(2), 298–306 (1979)

    MathSciNet  MATH  Google Scholar 

  99. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules. J. Guidance Control Dyn. 19(3), 592–599 (1996)

    MATH  Google Scholar 

  100. Darby, C.L., Hager, W.W., Rao, A.V.: An hp-adaptive pseudospectral method for solving optimal control problems. Optim Control Appl. Methods 32(4), 476–502 (2011)

    MathSciNet  MATH  Google Scholar 

  101. Wiegand, A., et al.: ASTOS User Manual, vol. 17. Astos Solutions GmbH, Unterkirnach (2010)

    Google Scholar 

  102. Härer, A., Matha, D., Kucher, D., Sandner, F.: Optimization of offshore wind turbine components in multi-body simulations for cost and load reduction. In: Proceedings of the EWEA Offshore, pp. 1–7 (2013)

  103. Sachs, G., Knoll, A., Lesch, K.: Optimal utilization of wind energy for dynamic soaring. Tech. Soar. 15(2), 48–55 (1991)

    Google Scholar 

  104. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: User’s guide for NPSOL (version 4.0): a Fortran package for nonlinear programming. Tech. rep., Stanford Univ CA Systems Optimization Lab (1986)

  105. Liu, Y., Longo, S., Kerrigan, E.C.: Nonlinear predictive control of autonomous soaring UAVs using 3DOF models. Control Conference (ECC), 2013 European, IEEE, pp. 1365–1370 (2013)

  106. Patterson, M.A., Rao, A.V.: GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw 41(1), 1 (2014)

    MathSciNet  MATH  Google Scholar 

  107. Becerra, V.M.: PSOPT Optimal Control Solver User Manual. University of Reading, Reading (2010)

    Google Scholar 

  108. Rutquist, P., Edvall, M.: PROPT-MATLAB Optimal Control Software. Tomlab Optimization, Inc., Pullman, WA (2010)

    Google Scholar 

  109. Betts, J.T.: Practical methods for optimal control and estimation using nonlinear programming. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  110. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Mathematical Programming Language, Citeseer (1987)

  111. Cizniar, M., Fikar, M., Latifi, M.A.: MATLAB Dynamic Optimisation Code DYNOPT. User’s Guide, Technical report. KIRP FCHPT STU, Bratislava (2006)

    Google Scholar 

  112. Lawrance, N.R., Sukkarieh, S.: Wind energy based path planning for a small gliding unmanned aerial vehicle. In: AIAA Guidance, Navigation, and Control Conference, pp. 10–13 (2009)

  113. Bird, J.J., Langelaan, J.W., Montella, C., Spletzer, J., Grenestedt, J.: Closing the loop in dynamic soaring. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, USA, pp. 13–17 (2014)

  114. Hassan, A.M., Taha, H.E.: Geometric control formulation and nonlinear controllability of airplane flight dynamics. Nonlinear Dyn. 88, 1–19 (2017)

    MathSciNet  Google Scholar 

  115. Mir, I., Taha, H., Eisa, S.A., Maqsood, A.: A controllability perspective of dynamic soaring. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4493-6

    Article  Google Scholar 

  116. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, vol. 49. Springer, Berlin (2004)

    MATH  Google Scholar 

  117. Kalman, R.E., Ho, Y.C., Narendra, K.S.: Controllability of linear Dynamical systems. Contrib. Diff. Equ. 1, 189–213 (1963)

    MathSciNet  MATH  Google Scholar 

  118. Cariñena, J.F., Núñez, J.F.: Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians. Nonlinear Dyn. 86(2), 1285–1291 (2016)

    MathSciNet  MATH  Google Scholar 

  119. Bianchini, R.M., Stefani, G.: Graded approximations and controllability along a trajectory. SIAM J. Control Optim. 28(4), 903–924 (1990)

    MathSciNet  MATH  Google Scholar 

  120. Brunovsky, P.: Local controllability of odd systems. Math. Control Theory 1, 39–45 (1974)

    Google Scholar 

  121. Crouch, P.E., Byrnes, C.I.: Local accessibility, local reachability, and representations of compact groups. Theory Comput. Syst. 19(1), 43–65 (1986)

    MathSciNet  MATH  Google Scholar 

  122. Hermes, H.: On local controllability. SIAM J. Control Optim. 20(2), 211–220 (1982)

    MathSciNet  MATH  Google Scholar 

  123. Jurdjevic, V., Kupka, I.: Polynomial control systems. Math. Ann. 272(3), 361–368 (1985)

    MathSciNet  MATH  Google Scholar 

  124. Sussmann, H.J.: A general theorem on local controllability. SIAM J. Control Optim. 25(1), 158–194 (1987)

    MathSciNet  MATH  Google Scholar 

  125. Aguilar, C.O., Lewis, A.D.: Small-time local controllability for a class of homogeneous systems. SIAM J. Control Optim. 50(3), 1502–1517 (2012)

    MathSciNet  MATH  Google Scholar 

  126. Birdsall, D.: Flight stability and automatic control—second edition, Nelson RC, The McGraw-Hill Companies, 1221 Avenue of the Americas, New York, NY 10020-1095, USA1998. 441pp. Illustrated. Aeronaut. J. 102(1015), 299–299 (1998)

    Google Scholar 

Download references

Acknowledgements

Special thanks to Dr Haithem. E. Taha, Mechanical and Aerospace Engineering Department, UC Irvine for his continuous and sincere support throughout the phase of the research. The guidance and support extended by him contributed largely in making this research a success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh A. Eisa.

Ethics declarations

Conflict of Interest

The authors of this paper have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, I., Eisa, S.A. & Maqsood, A. Review of dynamic soaring: technical aspects, nonlinear modeling perspectives and future directions. Nonlinear Dyn 94, 3117–3144 (2018). https://doi.org/10.1007/s11071-018-4540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4540-3

Keywords

Navigation