Skip to main content
Log in

Boron Availability in Post-Monsoon Dry Period in Different Identified Soil Series of Acidic Fluvisols of Northern Plains of West Bengal, India

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The series-based information on boron (B) is not comprehensively available in the Fluvisols of north-eastern Terai region of India. This region is frequently reported to be deficient in available B (av-B) due to intense leaching and low solubility of primary B minerals. The present experiment was conducted in the Cooch Behar district with the aim to assess the surface soil (0–15 cm) status of av-B in four dominant soil series (Lotafela, Matiarkuthi, Rajpur and Balarampur) in post-monsoon months of dry winter. Hot water (HW) and 0.01 M hot calcium chloride (HCC) (0.01 M CaCl2) were used to extract av-B, where HW extracted higher amount of B than HCC in all soil series. The mean HW-B concentration was highest in the Rajpur series (1.71 mg kg–1) followed by Balarampur (1.64 mg kg–1), Matiarkuthi (1.58 mg kg–1) and Lotafela (1.57 mg kg–1). Similar result was also notice in HCC-B. The four principal components explained 79.58% of the total variance, while pH and SOC contributed maximum variability among all the soil factors under study. Spatial interpolated (Inverse Distance Weighted) maps and nutrient index value (NIV) based fertility rating showed the soils in the study area were not deficient in av-B, with a majority of portions exceeding the B critical limit of toxicity for sensitive crops. Boron availability also got increased in dry periods with assured irrigation supply to winter crops along with the high depth of water table of the Terai region. Accordingly, the local farmers need to check excess B fertilizer (borax) application in dry post-monsoon periods considering long-term effects of B fertilizers on soil, cropping system and production economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. K. Agarwal, S. Firdous, and A. Kumar, “Effect of B application on grain yield production and its movement in soil at different growth stages in rice,” Int. J. Curr. Microbiol. Appl. Sci. 7, 1333–1340 (2018). https://www.ijcmas.com/special/7/B.K.%20Agarwal,%20et%20al.pdf.

    Google Scholar 

  2. W. Ahmad, M. H. Zia, S. S. Malhi, A. Niaz, and Saifullah, “Boron deficiency in soils and crops: a review,” in Crop Plant, Ed. by A. Goyal (InTech Open, 2012), pp. 77–114.

    Google Scholar 

  3. R. L. Aitken, A. J. Jeffrey, and B. L. Compton, “Evaluation of selected extractants for boron in Some Queensland soils,” Aust. J. Soil Res. 25 (3), 263–273 (1987). https://doi.org/10.1071/SR9870263

    Article  Google Scholar 

  4. S. Arora and D. S. Chahal, “Profile distribution of different forms of boron in typic Haplustalfs of Punjab,” J. Indian Soc. Soil Sci. 55 (3), 248–253 (2007). https://www.indianjournals.com/ijor.aspx?target=ijor: jisss&volume=55&issue=3&article=003

    Google Scholar 

  5. M. Barman, L. M. Shukla, S. P. Datta, and R. K. Rattan, “Effect of applied lime and boron on the availability of nutrients in an acid soil,” J. Plant Nutr. 37 (3), 357–373 (2014). https://doi.org/10.1080/01904167.2013.859698

    Article  Google Scholar 

  6. S. K. Behera, A. K. Shukla, M. Singh, and B. S. Dwivedi, “Extractable boron in some acid soils of India: status, spatial variability and relationship with soil properties,” J. Indian Soc. Soil Sci. 64 (2), 183–192 (2016). Https://doi.org/https://doi.org/10.5958/0974-0228.2016.00024.4

    Article  Google Scholar 

  7. C. A. Black, Methods of Soil Analysis (American Society of Agronomy, Inc, Madisson, 1965), Part 2.

  8. L. Bolaños, K. Lukaszewski, I. Bonilla, and D. Blevins, “Why boron?,” Plant Physiol. Biochem. 42 (11), 907–912 (2004). https://doi.org/10.1016/j.plaphy.2004.11.002

    Article  Google Scholar 

  9. G. J. Bouyoucos, “Hydrometer method improved for making particle size analyses of soils,” Agro. J. 54 (5), 464–465 (1962). https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  10. P. H. Brown and B. J. Shelp, “Boron mobility in plants,” Plant Soil 193 (1), 85–101 (1997). https://doi.org/10.1023/A:1004211925160

    Article  Google Scholar 

  11. D. R. Chaudhary and L. M. Shukla, “Evaluation of extractants for predicting availability of boron to mustard in arid soils of India,” Commun. Soil Sci. Plant Anal. 35 (1–2), 267–283 (2004). https://doi.org/10.1081/CSS-120027649

    Article  Google Scholar 

  12. R. P. S. Chauhan and A. K. Asthana, “Tolerance of lentil, barley and oats to boron in irrigation water,” J. Agric. Sci. 97 (1), 75–78 (1981). https://doi.org/10.1017/S0021859600035863

    Article  Google Scholar 

  13. F. W. Chen and C.W. Liu, “Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan,” Paddy Water Environ. 10 (1), 209–222 (2012). https://doi.org/10.1007/s10333-012-0319-1

    Article  Google Scholar 

  14. R. Das, B. Mandal, D. Sarkar, A. K. Pradhan, A. Datta, D. Padhan, A. Seth, R. Kumar, N. De, V. N. Mishra, K. B. Polarah, S. Sharmai, N. P. Thakurj, D. Kachrooj, M. Rayk, A. Sharmal, K. P. Patelm, L. M. Garnayakn, and W. N. Narkhede, “Boron availability in soils and its nutrition of crops under long-term fertility experiments in India,” Geoderma 351, 116–129 (2019). https://doi.org/10.1016/j.geoderma.2019.05.022

    Article  Google Scholar 

  15. ESRI, 2022, Overview of Georeferencing. https://pro. arcgis.com/en/pro-app/2.8/help/data/imagery/overview-of-georeferencing.htm. Cited March 12, 2022.

  16. E. Glimm, H. Heuer, B. Engelen, K. Smalla, and H. Backhaus, “Statistical comparisons of community catabolic profiles,” J. Microbiol. Methods 30 (1), 71–80 (1997). https://doi.org/10.1016/S0167-7012(97)00046-8

    Article  Google Scholar 

  17. S. Goldberg, “Reactions of boron with soils,” Plant Soil 193, 35–48 (1997). https://doi.org/10.1023/A:1004203723343

    Article  Google Scholar 

  18. S. Goldberg and H. S. Forster, “Boron sorption on calcareous soils and reference calcites,” Soil Sci. 152 (4), 304–310 (1991). https://doi.org/10.1097/00010694-199110000-00009

    Article  Google Scholar 

  19. B. Gu and L. E. Lowe, “Studies on the adsorption of boron on humic acids,” Can. J. Soil Sci. 70 (3), 305–311 (1990). https://doi.org/10.4141/cjss90-031

    Article  Google Scholar 

  20. U. C. Gupta, “Boron,” in Handbook of Plant Nutrition, Ed. by A. V. Barker and D. J. Pilbeam, 1st Ed. (CRC Press, Boca Raton, 2016), pp. 257–294.

    Google Scholar 

  21. U. C. Gupta and J. A. MacLeod, “Influence of calcium and magnesium sources on boron uptake and yield of alfalfa and rutabagas as related to soil pH,” Soil Sci. 124 (5), 279–284 (1977). https://doi.org/10.1097/00010694-197711000-00004

    Article  Google Scholar 

  22. S. Gürel, H. Başar, E. Keskin, and M. S Dirim, “The determination of soil boron fractions, their relationships to soil properties and the availability to olive (Olea europea L.) trees,” Commun. Soil Sci. Plant Anal. 50 (8), 1044–1062 (2019). https://doi.org/10.1080/00103624.2019.1603307

    Article  Google Scholar 

  23. M. L. Jackson, Soil Chemical Analysis (Prentice Hall, New Delhi, 1973).

    Google Scholar 

  24. V. K. Kashin, “Boron in soils and plants of the West Transbaikal region” Eurasian Soil Sci. 45 (4), 368–375 (2012).

    Article  Google Scholar 

  25. S. K. Kohli, H. Kaur, K. Khanna, N. Handa, R. Bhardwaj, J. Rinklebe, and P. Ahmad, “Boron in plants: uptake, deficiency and biological potential,” Plant Growth Regul. 100 (2), 267–282 (2022). https://doi.org/10.1007/s10725-022-00844-7

    Article  Google Scholar 

  26. K. A. Kumar, S. Thayalan, R. S. Reddy, M. Lalitha, B. Kalaiselvi, S. Parvathy, K. Sujatha, R. Hegde, S. K. Singh, and B. B. Mishra, “Geology and geomorphology,” in The Soils of India, Ed. by B. B. Mishra (Springer Cham, India, 2020), pp. 57–79.

    Google Scholar 

  27. Q. Li, Y. Luo, C. Wang, B. Li, X. Zhang, D. Yuan, X. Gao, and H. Zhang, “Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s,” Sci. Total Environ. 547, 173–181 (2016). https://doi.org/10.1016/j.scitotenv.2015.12.094

    Article  Google Scholar 

  28. D. K. Mandal, C. Mandal, and S. K. Singh, “Delineating agro-ecological regions,” e-Publication 1–8, (ICAR-NBSS&LUP Technologies, Nagpur, 2016). https://www.studocu.com/en-us/document/studocu university/geography/delineating-agro-ecological-regions/7174474. Cited November 11, 2022.

  29. G. K. McDonald, J. K. Eglinton, and A. R. Barr, “Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeum vulgare L.),” Plant Soil 326 (1), 275–290 (2010). https://doi.org/10.1007/s11104-009-0006-1

    Article  Google Scholar 

  30. C. C. Mitchell and R. Mylavarapu, “Soil test correlation and calibration for recommendations”, in Soil Test Methods from the Southeastern United States, Ed. by F. J. Sikora, Southern Cooperative Series Bulletin No. 419 (Clemson Univ., South Carolina, 2014), pp. 11–18.

  31. R. O. Nable, G. S. Bañuelos, and J. G. Paull, “Boron toxicity,” Plant Soil 193 (1), 181–198 (1997) https://doi.org/10.1023/A:1004272227886

    Article  Google Scholar 

  32. D. C. Nayak, D. Sarkar, and M. Velayutham, Soil Series of West Bengal (National Bureau of Soil Survey and Land Use Planning, Indian Council of Agricultural Research in cooperation with All India Soil and Land Use Survey, Nagpur, 2001), publication No. 89.

  33. A. Niaz, A. M. Ranjha, Rahmatullah, A. Hannan, and M. Waqas, “Boron status of soils as affected by different soil characteristics–pH, CaCO3, organic matter and clay contents,” Pak. J. Agric. Sci. 44 (3), 428–435 (2007). https://pakjas.com.pk/papers/286.pdf.

    Google Scholar 

  34. M. M. Nistor, H. Rahardjo, A. Satyanaga, K. Z. Hao, Q. Xiaosheng, and A. W. L. Sham, “Investigation of groundwater table distribution using borehole piezometer data interpolation: case study of Singapore,” Eng. Geol. 271, 105590 (2020). https://doi.org/10.1016/j.enggeo.2020.105590

    Article  Google Scholar 

  35. R. Prasad, D. Kumar, Y. S. Shivay, and D. S. Rana, “Boron in Indian agriculture – a review,” Indian J. Agron. 59 (4), 511–517 (2014). https://www.indianjournals.com/ijor.aspx?target=ijor:ija&volume=59& issue=4&article=002.

    Article  Google Scholar 

  36. R Core Team. V. 4.2.2. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022).

    Google Scholar 

  37. D. Radočaj, M. Jurišić, and O. Antonić, “Determination of soil C:N suitability zones for organic farming using an unsupervised classification in Eastern Croatia,” Ecol. Indic. 123, 107382 (2021). https://doi.org/10.1016/j.ecolind.2021.107382

    Article  Google Scholar 

  38. B. Ramamoorthy and J. C. Bajaj, “Available nitrogen, phosphorus and potassium status of Indian soils,” Fert. News 14, 24–26 (1969). https://agris.fao.org/agris-search/search.do?recordID=US201301199024.

  39. S. K. Ray and G. C. Banik, “Available micronutrient status in relation to soil properties in some villages under four agro-climatic features of West Bengal,” J. Indian Soc. Soil Sci. 64 (2), 169–175 (2016). https://doi.org/10.5958/0974-0228.2016.00022.0

    Article  Google Scholar 

  40. M. Raza, A. R. Mermut, J. J. Schoenau, and S. S. Malhi, “Boron fractionation in some Saskatchewan soils,” Can. J. Soil Sci. 82 (2), 173–179 (2002). https://doi.org/10.4141/S01-027

    Article  Google Scholar 

  41. I. Roy, Aquifer Systems of West Bengal. Central Ground Water Board, Ministry of Water Resources, Government of India, Eastern Region, Kolkata (2014). https://www. researchgate.net/publication/265048704_Aquifer_Systems_of_West_Bengal. Cited January 6, 2022.

  42. J. Ryan, S. Miyamoto, and J. L. Stroehlein, “Relation of solute and sorbed boron to the boron hazard in irrigation water,” Plant Soil 47 (1), 253–256 (1977). https://doi.org/10.1007/BF00010386

    Article  Google Scholar 

  43. M. K. Sandabe and S. Mohamed, “Boron adsorption by some semi-arid soils of North Eastern Nigeria,” Int. J. Appl. Agric. Res. 6 (1), 71–76 (2011). http://www.ripublication.com/IJAER/ijaarv6n1_8.pdf.

  44. R. Santhi, P. Stalin, K. Arulmozhiselvan, K. Radhika, S. Sivagnanam, J. Sekar, Y. Muralidharudu, P. Dey, and A. S. Rao, “Soil fertility appraisal for Villupuram district of Tamil Nadu using GPS and GIS techniques,” J. Indian Soc. Soil Sci. 66 (2), 158–165 (2018). https://doi.org/10.5958/0974-0228.2018.00020.8

    Article  Google Scholar 

  45. D. Sarkar, B. Mandal, and D. Mazumdar, “Plant availability of boron in acid soils as assessed by different extractants,” J. Plant Nutr. Soil Sci. 171 (2), 249–254 (2008a). https://doi.org/10.1002/jpln.200700066

    Article  Google Scholar 

  46. D. Sarkar, B. Mandal, M. C. Kundu, and J. A. Bhat, “Soil properties influence distribution of extractable boron in soil profile,” Commun. Soil Sci. Plant Anal. 39 (15–16), 2319–2332 (2008b). https://doi.org/10.1080/00103620802292418

    Article  Google Scholar 

  47. S. Sarkar, H. Banerjee, K. Ray, and D. Ghosh, “Boron fertilization effects in processing grade potato on an inceptisol of West Bengal, India,” J. Plant Nutr. 41 (11), 1456–1470 (2018). https://doi.org/10.1080/01904167.2018.1457685

    Article  Google Scholar 

  48. S. Shrestha, M. Becker, J. P. A. Lamers, and M. A. Wimmer, “Residual effects of B and Zn fertilizers applied to dry season crops on the performance of the follow-up crop of maize in Nepal,” J. Plant Nutr. Soil Sci. 184 (2), 238–245 (2021). https://doi.org/10.1002/jpln.202000289

    Article  Google Scholar 

  49. K. Shukla, P. Kumar, G. S. Mann, and M. Khare, “Mapping spatial distribution of particulate matter using kriging and inverse distance weighting at supersites of megacity Delhi,” Sust. Cities Soc. 54, 101997 (2020). https://doi.org/10.1016/j.scs.2019.101997

    Article  Google Scholar 

  50. M. V. Singh, “Evaluation of current micronutrient stocks in different agro-ecological zones of India for sustainable crop production,” Fert. News 46, 25–42 (2001). https://www.semanticscholar.org/paper/Evaluation-of-current-micronutrient-stocks-in-zones-Singh/ c2c0e9c1f17ccf1f5d4360d2c02aa40644d84d46.

  51. R. N. Singh, S. Singh, and B. Kumar, “Interaction effect of sulphur and boron on yield, nutrient uptake and quality characters of soybean (Glycine max L. Merill) grown in acidic upland soil,” J. Indian Soc. Soil Sci. 54 (4), 516–518 (2006) https://www.indianjournals.com/ ijor.aspx?target=ijor:jisss&volume=54&issue=4&article=024.

    Google Scholar 

  52. F. Steiner and M. D. C. Lana, “Effect of pH on boron adsorption in some soils of Paraná, Brazil,” Chil. J. Agric. Res. 73 (2), 181–186 (2013). https://doi.org/10.4067/S0718-58392013000200015

    Article  Google Scholar 

  53. A. Tlili, I. Dridi, R. Attaya, and M. Gueddari, “Boron characterization, distribution in particle-size fractions, and its adsorption-desorption process in a semiarid Tunisian soil,” J. Chem. 2019, 2508489 (2019). https://doi.org/10.1155/2019/2508489

    Article  Google Scholar 

  54. A. J. Walkley and I. A. Black “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Sci. 37 (1), 29–38 (1934)

    Article  Google Scholar 

  55. J. I. Wear and R. M. Patterson, “Effect of soil pH and texture on the availability of water-soluble boron in the soil,” Soil Sci. Soc. Am. J. 26 (4), 344–346 (1962). https://doi.org/10.2136/sssaj1962.03615995002600040011x

    Article  Google Scholar 

  56. R. Webster and M. A. Oliver, “Sample adequately to estimate variograms of soil properties,” Eur. J. Soil Sci. 43 (1), 177–192 (1992). https://doi.org/10.1111/j.1365-2389.1992.tb00128.x

    Article  Google Scholar 

  57. H. D. Yadav, O. P. Yadav, O. P. Dhankar, and M. C. Oswal, “Effect of chloride salinity and boron on germination, growth, and mineral composition of chickpea (Cicer arietinum L.),” Ann. Arid Zone 28 (1–2), 63–67 (1989). https://epubs.icar.org.in/index.php/AAZ/ issue/view/1937.

    Google Scholar 

  58. S. N. Yadav, S. K. Singh, and Omkar Kumar, “Effect of boron on yield attributes, seed yield and oil content of mustard (Brassica juncea L.) on an inceptisol,” J. Indian Soc. Soil Sci. 64 (3), 291–296 (2016). https://doi.org/10.5958/0974-0228.2016.00041.4

    Article  Google Scholar 

  59. W. Yang, Y. Zhao, D. Wang, H. Wu, A. Lin, and L. He, “Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang River in Huangshan, China,” Int. J. Environ. Res. Public Health 17 (8), 2942 (2020). https://doi.org/10.3390/ijerph17082942

    Article  Google Scholar 

  60. S. K. Yau and J. Ryan, “Boron toxicity tolerance in crops: a viable alternative to soil amelioration,” Crop Sci. 48 (3), 854–865 (2008). https://doi.org/10.2135/cropsci2007.10.0539

    Article  Google Scholar 

  61. U. Yermiyahu, R. Keren, and Y. Chen, “Effect of composted organic matter on boron uptake by plants,” Soil Sci. Soc. Am. J. 65 (5), 1436–1441 (2001). https://doi.org/10.2136/sssaj2001.6551436x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Chandra Banik.

Ethics declarations

We have no competing financial interest or personal relationship with other people and organizations that could influence this work. No financial grant has been received for the present work.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Banik, G.C., Debnath, M.K. et al. Boron Availability in Post-Monsoon Dry Period in Different Identified Soil Series of Acidic Fluvisols of Northern Plains of West Bengal, India. Eurasian Soil Sc. 56 (Suppl 2), S287–S299 (2023). https://doi.org/10.1134/S1064229323601658

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601658

Keywords:

Navigation