Skip to main content
Log in

Assessment of Soil Tolerance towards Contamination with Platinum Nanoparticles by Biodiagnostic Methods

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil tolerance towards contamination with platinum nanoparticles (PtNP) was assessed using biological parameters for soils of southern Russia differing in particle-size composition, organic matter content, and soil reaction. Model laboratory experiments were performed with samples from the upper (0–10 cm) layer of soils with contrasting genetic characteristics, i.e., ordinary chernozem (Haplic Chernozem (Loamic)), brown forest soil (Eutric Cambisol), and gray sandy soil under pine stand (Eutric Arenosol). PtNP concentrations of 0.01, 0.1, 1, 10, and 100 mg/kg were studied. Soil tolerance was estimated using sensitive and informative biological indices: the total number of bacteria, the activity of catalase and dehydrogenases, and germination degree of radish seeds, and radish root length. In most cases, low PtNP concentrations (0.01, 0.1, and 1 mg/kg) did not affect reliably the biological state of soils, whereas higher doses (10 and 100 mg/kg) worsened biological characteristics. The enzymatic activity of PtNP-contaminated soils decreased to a lesser extent than the phytotoxic and microbiological indices. Ordinary chernozem showed a higher tolerance towards PtNP contamination than brown forest soil and gray sandy soil. The results of this study can be used for predicting ecological risks of soil contamination with PtNP and for assigning the maximum permissible concentration for platinum in different soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Burenina, A. O. Voronova, and T. P. Astafurova, “Morphological and physiological effects of platinum nanoparticles on wheat seedlings,” in Collection of Scientific Papers Based on Materials of a Scientific Conference Dedicated to the 100th Anniversary of the Department of Physiology of Plants and Microorganisms of Perm State National Research University, October 18–19, 2017 (Perm, 2017), pp. 9–11.

  2. L. V. Galaktionova, I. Z. Gubaidullina, S. V. Lebedev, and I. A. Gavrish, “Effect of zinc nanoparticles on morphometric parameters and pigment apparatus of Raphanus sativus L., Lepidium sativum L., and Avena sativa L.,” Izv. Orenb. Gos. Agrar. Univ., No. 2, 203–205 (2017).

  3. K. Sh. Kazeev and S. I. Kolesnikov, Soil Biodiagnostics: Methodology and Research Methods (Izd. Yuzhn. Fed. Univ., Rostov-on-Don, 2012) [in Russian].

    Google Scholar 

  4. S. I. Kolesnikov, K. Sh. Kazeev, and V. F. Val’kov, Ecological Consequences of Soil Pollution with Heavy Metals (Izd. Sev.-Kavk. Nauchn. Tsentra Vyssh. Shk., Rostov-on-Don, 2000) [in Russian].

    Google Scholar 

  5. S. I. Kolesnikov, K. Sh. Kazeev, M. L. Tatosyan, and V. F. Val’kov, “The effect of pollution with oil and oil products on the biological status of ordinary chernozems,” Eurasian Soil Sci. 39 (5), 552–556 (2006).

    Article  Google Scholar 

  6. S. I. Kolesnikov, A. N. Timoshenko, K. Sh. Kazeev, Yu. V. Akimenko, and M. A. Myasnikova, “Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems,” Eurasian Soil Sci. 52 (8), 982–987 (2019). https://doi.org/10.1134/S106422931908009X

    Article  Google Scholar 

  7. I. V. Kubrakova, O. A. Tyutyunnik, I. Ya. Koshcheeva, A. Yu. Sadagov, and S. N. Nabiullina, “Migration behavior of platinum group elements in natural and technogeneous systems,” Geochem. Int. 55 (1), 108–124 (2017). https://doi.org/10.1134/S0016702916120053

    Article  Google Scholar 

  8. N. A. Kulikova, “Silver nanoparticles in soil: input, transformation, and toxicity,” Eurasian Soil Sci. 54 (3), 352–365 (2021). https://doi.org/10.1134/S1064229321030091

    Article  Google Scholar 

  9. D. V. Ladonin, “Platinum-group elements in soils and street dust of the southeastern administrative district of Moscow,” Eurasian Soil Sci. 51 (3), 268–276 (2018). https://doi.org/10.1134/S1064229318030055

    Article  Google Scholar 

  10. T. M. Minkina, G. V. Motuzova, and O. G. Nazarenko, “Interaction of heavy metals with the organic matter of an ordinary chernozem,” Eurasian Soil Sci. 39 (7), 720–726 (2006).

    Article  Google Scholar 

  11. I. O. Plekhanova, O. A. Zolotareva, I. D. Tarasenko, and A. S. Yakovlev, “Assessment of ecotoxicity of soils contaminated by heavy metals,” Eurasian Soil Sci. 52 (10), 1274–1288 (2019). https://doi.org/10.1134/S1064229319100089

    Article  Google Scholar 

  12. V. A. Terekhova, E. V. Prudnikova, A. P. Kiryushina, M. M. Karpukhin, I. O. Plekhanova, and O. S. Yakimenko, “Phytotoxicity of heavy metals in contaminated podzolic soils of different fertility levels,” Eurasian Soil Sci. 54 (6), 964–974 (2021). https://doi.org/10.1134/S1064229321060132

    Article  Google Scholar 

  13. A. Timoshenko, S. Kolesnikov, V. Varduni, T. Ter-Misakyants, E. Nevedomaya, and K. Kazeev, “Estimation of the ecotoxicity of copper nanoparticles,” Ekol. Prom-st. Ross., No. 25, 61–65 (2021), pp. 61–65. https://doi.org/10.18412/1816-0395-2021-4-61-65

    Article  Google Scholar 

  14. N. I. Tsepina, T. V. Minnikova, S. I. Kolesnikov, and K. Sh. Kazeev, “Estimation of the phytotoxicity of silver on soils of different stability: brown forest soils, chernozems and gray sands,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 3, 107–112 (2020). https://doi.org/10.18522/1026-2237-2020-3-107-112

    Article  Google Scholar 

  15. O. V. Chernova and O. S. Bezuglova, “Use of background concentrations of heavy metals for regional monitoring of soil contamination by the example of Rostov oblast,” Eurasian Soil Sci. 52 (8), 1007–1017 (2019). https://doi.org/10.1134/S1064229319080040

    Article  Google Scholar 

  16. F. Alt, H. R. Eschnauer, B. Mergler, J. Messerschmidt, and G. Tölg, “A contribution to the ecology and enology of platinum,” Fresenius’ J. Anal. Chem. 357, 1013–1019 (1997). https://doi.org/10.1007/s002160050296

    Article  Google Scholar 

  17. K. I. Ameen, J. A. Alabdullatif, and S. AL-Nadhari, “A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi,” Ecotoxicol. Environ. Saf. 213, 112027 (2021). https://doi.org/10.1016/j.ecoenv.2021.112027

    Article  Google Scholar 

  18. M. Asztemborska, R. Steborowski, J. Kowalska, and G. Bystrzejewska- Piotrowska, “Accumulation of aluminum by plants exposed to nano-and microsized particles of Al2O3,” Int. J. Environ. Res. 9, 109–116 (2015). https://doi.org/10.22059/ijer.2015.880

    Article  Google Scholar 

  19. M. M. Ayad, N. L. Torad, A. A. El-Nasr, and W. Amer, “Study on catalytic efficiency of platinum and silver nanoparticles confined in nanosized channels of a 3‑D mesostructured silica,” J. Porous Mater. 28, 65–79 (2021). https://doi.org/10.1007/s10934-020-00960-7

    Article  Google Scholar 

  20. A. Aygun, F. Gülbagca, L. Y. Ozer, B. Ustaoglu, Y. C. Altunoglu, M. C. Baloglu, M. N. Atalar, M. H. Alma, and F. Sen, “Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent,” J. Pharm. Biomed. Anal. 179, 112961 (2020). https://doi.org/10.1016/j.jpba.2019.112961

    Article  Google Scholar 

  21. M. Birke, U. Rauch, J. Stummeyer, H. Lorenz, and B. Keilert, “A review of platinum group element (PGE) geochemistry and a study of the changes of PGE contents in the topsoil of Berlin, Germany, between 1992 and 2013,” J. Geochem. Explor. 187, 72–96 (2018). https://doi.org/10.1016/j.gexplo.2017.09.005

    Article  Google Scholar 

  22. K. Bloch, K. Pardesi, C. Satriano, and S. Ghosh, “Bacteriogenic platinum nanoparticles for application in nanomedicine,” Front. Chem. 9, 624344 (2021). https://doi.org/10.3389/fchem.2021.624344

    Article  Google Scholar 

  23. O. Chlumsky, S. Purkrtova, H. Michova, H. Sykorova, P. Slepicka, D. Fajstavr, P. Ulbrich, J. Viktorova, and K. Demnerova, “Antimicrobial properties of palladium and platinum nanoparticles: a new tool for combating food-borne pathogens,” Int. J. Mol. Sci. 22, 7892 (2021). https://doi.org/10.3390/ijms22157892

    Article  Google Scholar 

  24. A. Chwalibog, E. Sawosz, A. Hotowy, J. Szeliga, S. Mitura, K. Mitura, M. Grodzik, P. Orlowski, and A. Sokolowska, “Visualization of interaction between inorganic nanoparticles and bacteria or fungi,” Int. J. Nanomed. 5, 1085–1094 (2010). https://doi.org/10.2147/IJN.S13532

    Article  Google Scholar 

  25. D. Cicchella, L. Fedele, B. De Vivo, S. Albanese, and A. Lima, “Platinum group element distribution in the soils from urban areas of the Campania region (Italy),” Geochem. Explor. Environ. Anal. 8, 31–40 (2008). https://doi.org/10.1144/1467-7873/07-149

    Article  Google Scholar 

  26. G. Cornelis, L. P. Pang, C. Doolette, J. K. Kirby, and M. J. McLaughlin, “Transport of silver nanoparticles in saturated columns of natural soils,” Sci. Total Environ. 463, 120–130 (2013). https://doi.org/10.1016/j.scitotenv.2013.05.089

    Article  Google Scholar 

  27. G. De la Rosa, C. Garcia-Castaneda, E. Vazquez-Nunez, A. J. Alonso-Castro, G. Basurto-Islas, A. Mendoza, G. Cruz-Jimenez, and C. Molina, “Physiological and biochemical response of plants to engineered NMs: implications on future design,” Plant Physiol. Biochem. 110, 226–235 (2017). https://doi.org/10.1016/j.plaphy.2016.06.014

    Article  Google Scholar 

  28. C. O. Dimkpa, “Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure,” Curr. Opin. Environ. Sci. Health 6, 1–8 (2018). https://doi.org/10.1016/j.coesh.2018.06.007

    Article  Google Scholar 

  29. H. T. Diong, R. Das, B. Khezri, B. Srivastava, X. Wang, P. K. Sikdar, and R. D. Webster, “Anthropogenic platinum group element (Pt, Pd, Rh) concentrations in PM10 and PM2.5 from Kolkata, India,” SpringerPlus 5, 1242 (2016). https://doi.org/10.1186/s40064-016-2854-5

    Article  Google Scholar 

  30. K. H. Ek, S. Rauch, G. M. Morrison, and P. Lindberg, “Environmental routes for platinum group elements to biological materials—a review,” Sci. Total Environ. 334–335, 149–159 (2004). https://doi.org/10.1016/j.scitotenv.2004.04.027

    Article  Google Scholar 

  31. J. Gopal, N. Hasan, M. Manikandan, and H. Wu, “Bacterial toxici- ty/compatibility of platinum nanospheres, nanocuboids and nanoflowers,” Sci. Rep. 3, 1260 (2013).https://doi.org/10.1038/srep01260

  32. M. Grimaldi, V. Dal Bo, B. Ferrari, E. Roda, F. De. Luca, P. Veneroni, S. Barni, et al., “Long-term effects after treatment with platinum compounds, cisplatin and [Pt (O, O'-acac)(γ-acac)(DMS)]: autophagy activation in rat B50 neuroblastoma cells,” Toxicol App-l. Pharmacol. 364, 1–11 (2019). https://doi.org/10.1016/j.taap.2018.12.005

    Article  Google Scholar 

  33. A. Hasani, M. Madhi, P. Gholizadeh, J. Shahbazi, M. Ahangarzadeh Rezaee, G. Zarrini, and H. Kafil, “Metal nanoparticles and consequences on multi-drug resistant bacteria: reviving their role,” SN Appl. Sci. 1, 360 (2019). https://doi.org/10.1007/s42452-019-0344-4

    Article  Google Scholar 

  34. J. Huang, C. Cao, R. Li, and W. Guan, “Effects of silver nanoparticles on soil ammonia-oxidizing microorganisms under temperatures of 25 and 5°C,” Pedosphere 28, 607–616 (2018).

    Article  Google Scholar 

  35. C. Huff, E. Biehler, Q. Quach, J. M. Long, and T. M. Abdel-Fattah, “Synthesis of highly dispersive platinum nanoparticles and their application in a hydrogen generation reaction,” Colloids Surf., A 610, 125734 (2021). https://doi.org/10.1016/j.colsurfa.2020.125734

    Article  Google Scholar 

  36. K. E. Jarvis, S. J. Parry, and J. M. Piper, “Temporal and spatial studies of autocatalyst-derived platinum, rhodium, and palladium and selected vehicle-derived trace elements in the environment,” Environ. Sci. Technol. 35, 1031–1036 (2001). https://doi.org/10.1021/es0001512

    Article  Google Scholar 

  37. M. Jeyaraj, S. Gurunathan, M. Qasim, M. H. Kang, and J. H. Kim, “A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles,” Nanomaterials 9, 1719 (2019). https://doi.org/10.3390/nano9121719

    Article  Google Scholar 

  38. A. Kabata-Pendias, Trace Elements in Soils and Plants (Crc Press, Boca Raton, 2010), p. 548.

    Book  Google Scholar 

  39. K. K. Kasem, “Role of platinum in photoelectrochemical studies related to solar energy harvesting,” Platinum Met. Rev. 56, 221–228 (2012). https://doi.org/10.1595/147106712X654178

    Article  Google Scholar 

  40. S. A. Khan, S. Shahid, A. Ayaz, J. Alkahtani, M. S. Elshikh, and T. Riaz, “Phytomolecules-coated NiO nanoparticles synthesis using abutilon indicum leaf extract: antioxidant, antibacterial, and anticancer activities,” Int. J. Nanomed. 16, 1757–1773 (2021). https://doi.org/10.2147/IJN.S294012

    Article  Google Scholar 

  41. C. J. Kliewer and G. A. Somorjai, “Structure effects on Pyridine hydrogenation over Pt(111) and Pt(100) studied with sum frequency generation vibrational spectroscopy,” Catal. Lett. 137, 118–122 (2010).

    Article  Google Scholar 

  42. S. I. Kolesnikov, N. I. Tsepina, T. V. Minnikova, K. Sh. Kazeev, S. S. Mandzhieva, S. N. Sushkova, T. M. Minkina, M. Mazarji, R. K. Singh and V. D. Rajput, “Influence of silver nanoparticles on the biological indicators of haplic chernozem,” Plants 10, 1022 (2021). https://doi.org/10.3390/plants10051022

    Article  Google Scholar 

  43. A. Kołton and M. A. Czaja, “Influence of platinum ions on the germination and seedling root growth of different plant species,” Geol. Geophys. Environ. 40, 343–348 (2014). https://doi.org/10.7494/geol.2014.40.4.343

    Article  Google Scholar 

  44. P. V. Kumar, S. M. Jelastin Kala, and K. S. Prakash, “Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies,” J. Environ. Chem. Eng. 7, 103146 (2019). https://doi.org/10.1016/j.jece.2019.103146

    Article  Google Scholar 

  45. F. Labbé, T. Asset, M. Chatenet, Y. Ahmad, K. Guérin, R. Metkemeijer, and S. Berthon-Fabry, “Activity and durability of platinum-based electrocatalysts with tin oxide–coated carbon aerogel materials as catalyst supports,” Electrocatalysis 10, 156–172 (2019). https://doi.org/10.1007/s12678-018-0505-z

    Article  Google Scholar 

  46. Y. Li, K. Zhang, S. Peng, G. Lu, and J. S. Li, “Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/ZnIn2S4 under visible light irradiation,” J. Mol. Catal. A: Chem. 363, 354–361 (2012). https://doi.org/10.1016/j.molcata.2012.07.011

    Article  Google Scholar 

  47. I. V. Lushchaeva and Y. N. Morgalev, “Effect of platinum nanoparticles on biological activity of humus-accumulated horizons,” Adv. Mater. Res. 1085, 384–389 (2015). https://doi.org/10.4028/www.scientific.net/amr.1085.384

    Article  Google Scholar 

  48. M. Manikandana, H.-F. Wua, and N. Hasana, “Cell population-based mass spectrometry using platinum nanodots for algal and fungal studies,” Biosens. Bioelectron. 35, 493–497 (2012). https://doi.org/10.1016/j.bios.2012.03.020

    Article  Google Scholar 

  49. M. Martins, C. Mourato, S. Sanches, J. P. Noronha, M. B. Crespo, and I. A. Pereira, “Biognic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds,” Water Res. 108, 160–168 (2017). https://doi.org/10.1016/j.watres.2016.10.071

    Article  Google Scholar 

  50. R. Merget and G. Rosner, “Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters,” Sci. Total Environ. 270, 165–173 (2001).

    Article  Google Scholar 

  51. A. Mitra and I. Sen, “Anthrobiogeochemical platinum, palladium and rhodium cycles of Earth: emerging environmental contamination,” Geochim. Cosmochim. Acta. 216, 417–432 (2017). https://doi.org/10.1016/j.gca.2017.08.025

    Article  Google Scholar 

  52. M. Moldovan, M. A. Palacios, and M. M. Gómez, “Environmental risk of soluble and particulate platinum group elements released from gasoline and diesel engine catalytic converters,” Sci. Total Environ. 296, 199–208 (2002). https://doi.org/10.1016/s0048-9697(02)00087-6

    Article  Google Scholar 

  53. B. Molleman and T. Hiemstra, “Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium,” Environ. Sci.: Nano. 4, 1314–1327 (2017).

    Google Scholar 

  54. D. Nachtigall, H. Kock, S. Artelt, K. Levsen, G. Wünsch, T. Rühle, and R. Schlögl, “Platinum solubility of a substance designed as a model for emissions of automobile catalytic converters,” Fresenius J. Anal. Chem. 354, 742–746 (1996).

    Article  Google Scholar 

  55. OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. OECD Guidelines for the Testing of Chemicals. Section 2 (OECD Publishing, Paris, 2006).

  56. S. Orecchio and D. Amorello, “Platinum levels in urban soils from Palermo (Italy). Analytical method using voltammetry,” Microchem. J. 99, 283–288 (2011). https://doi.org/10.1016/j.microc.2011.05.016

  57. M. S. Rahman, A. Chakraborty, S. Mazumdar, N. C. Nandi, M. N. I. Bhuiyan, S. M. Alauddin, I. A. Khan, and M. J. Hossain, “Effects of poly(vinylpyrrolidone) protected platinum nanoparticles on seed germination and growth performance of Pisum sativum,” Nano-Struct. Nano-Objects 21, 100408 (2020). https://doi.org/10.1016/j.nanoso.2019.100408

    Article  Google Scholar 

  58. V. D. Rajput, T. Minkina, S. Sushkova, V. Tsitsuashvili, S. Mandzhieva, A. Gorovtsov, D. Nevidomskyaya, and N. Gromakova, “Effect of nanoparticles on crops and soil microbial communities,” J. Soils Sediments 18, 2179–2187 (2017) https://doi.org/10.1007/s11368-017-1793-2

    Article  Google Scholar 

  59. F. Reith and G. Cornelis, “Effect of soil properties on gold- and platinum nanoparticle mobility,” Chem. Geol. 466, 446–453 (2017). https://doi.org/10.1016/j.chemgeo.2017.06.033

    Article  Google Scholar 

  60. B. Sahin, A. Aygün, H. Gündüz, K. Şahin, E. Demir, S. Akocak, et al., “Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line,” Colloids Surf., B 163, 119–124 (2018). https://doi.org/10.1016/j.colsurfb.2017.12.042

    Article  Google Scholar 

  61. L. Savignan, S. Faucher, P. Chéry, and G. Lespes, “Platinum group elements contamination in soils: review of the current state,” Ecotoxicol. Environ. Saf. 222, 112459 (2021). https://doi.org/10.1016/j.ecoenv.2021.112459

    Article  Google Scholar 

  62. H. Seckin, R. N. E. Tiri, I. Meydan, A. M. Aygun, K. Gunduz, and F. Sen, “An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: antioxidant, antibacterial and lipid peroxidation inhibition applications,” Environ. Res. 208, 112708 (2022). https://doi.org/10.1016/j.envres.2022.112708

    Article  Google Scholar 

  63. S. Shar, E. Shahsavaria, F. Reithc, O. A. Alghamdib, H. A. Yamanib, A. AlJudaibib, E. Donnere, S. Vasileiadisf, and A. S. Ball, “Dose-related changes in respiration and enzymatic activities in soils amended with mobile platinum and gold,” Appl. Soil Ecol. 157, 103727 (2021). https://doi.org/10.1016/j.apsoil.2020.103727

    Article  Google Scholar 

  64. P. J. Shiny, A. Mukerjee, and N. Chandrasekaran, “Comparative assessment of the phytotoxicity of silver and platinum nanoparticles,” in Proceedings of the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (Sathyabama Univ., Chennai, 2013), pp. 391–393. https://doi.org/10.1109/ICANMEET.2013.6609327

  65. M. Sodeno, S. Kato, H. Nanao, and M. Shirai, “Preparation and structural characterization of platinum nanosheets intercalated between graphite powder with high surface area,” Catal. Today 375, 48–55 (2020). https://doi.org/10.1016/j.cattod.2020.04.038

    Article  Google Scholar 

  66. S. Soltanian, M. Sheikhbahaei, N. Mohamadi, A. Pabarja, M. F. S. Abadi, and M. H. M. Tahroudi, “Biosynthesis of zinc oxide nanoparticles using hertia intermedia and evaluation of its cytotoxic and antimicrobial activities,” BioNanoScience 11, 245–255 (2021). https://doi.org/10.1007/s12668-020-00816-z

    Article  Google Scholar 

  67. The “Global Nanotechnology Market 2021-2026” report has been added to Research and Markets.com's offering. 2021. https://www.prnewswire.com/news-r-eleases/global-nanotechnology-market-report-2021-2026-market-opportunities-with-increasing-use-of-nanotechnology-in-building-materials-301433710.html.

  68. J. Wang, J. D. Gerlach, N. Savage, and G. P. Cobb, “Necessity and approach to integrated nanomaterial legislation and governance,” Sci. Total Environ. 442, 56–62 (2013). https://doi.org/10.1016/j.scitotenv.2012.09.073

    Article  Google Scholar 

  69. Y. Wang and X. LI, “Health risk of platinum group elements from automobile catalysts,” Procedia Eng. 45, 1004–1009 (2012). https://doi.org/10.1016/j.proeng.2012.08.273

    Article  Google Scholar 

  70. World Reference Base for Soil Resources 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 3rd. (FAO, Rome, 2015).

  71. Z. Xantini and E. Erasmus, “Platinum supported on nanosilica and fibrous nanosilica for hydrogenation reactions,” Polyhedron 193, 114769 (2021). https://doi.org/10.1016/j.poly.2020.114769

    Article  Google Scholar 

  72. Q. Q. Yang, Z. Y. Li, X. N. Lu, Q. N. Duan, L. Huang, and J. Bi, “A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment,” Sci. Total Environ. 42, 690–700 (2018). https://doi.org/690-70010.1016/j.scitotenv.2018.06.068

    Article  Google Scholar 

  73. T. You, D. Liu, J. Chen, Z. Yang, R. Dou, X. Gao, and L. Wang, “Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types,” J. Soils Sediments 18, 211–221 (2018). https://doi.org/10.1007/s11368-017-1716-2

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 22-74-00080, https://rscf.ru/project/22-74-00080/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Timoshenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Eremina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshenko, A.N., Kolesnikov, S.I., Kabakova, V.S. et al. Assessment of Soil Tolerance towards Contamination with Platinum Nanoparticles by Biodiagnostic Methods. Eurasian Soil Sc. 56, 1152–1160 (2023). https://doi.org/10.1134/S1064229323600884

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600884

Keywords:

Navigation