Skip to main content
Log in

Biosynthesis of Zinc Oxide Nanoparticles Using Hertia intermedia and Evaluation of its Cytotoxic and Antimicrobial Activities

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The unique properties of zinc oxide nanoparticles (ZnO-NPs) produced using plant extract make them attractive for use in medical as well as industrial applications. In this study, ZnO-NPs were synthesized using Hertia intermedia extract as the reducing and stabilizing agent followed by characterization and evaluation of its biological potency. Field emission scanning electron microscopy (FESEM) image showed spherical nanoparticles with a size range of 20–80 nm. UV-vis spectroscopy displayed absorption peaks at 362.67 nm which is one of the characteristic features of ZnO-NPs. FT-IR spectra confirmed the presence of some phytoconstituents as capping agents to stabilize the nanoparticles. MTT assay showed cytotoxicity of ZnO-NPs against Caco-2 (IC50 177 μg/mL), SH-SY5Y (IC50 184 μg/mL), MDA-MB-231 (IC50 168 μg/Ml, and HEK-293 (IC50 240 μg/mL) cell lines. Using 7-dichlorodihydrouorescein diacetate (DCFH-DA) assay, significant production of reactive oxygen species (ROS) was measured after 24 h of treatment with 200 μg/mL ZnO-NPs that is indicative of ZnO-NP-mediated oxidative stress. Induction of apoptosis/necrosis in ZnO-NPs-treated cells was determined using annexin V-PE/7-AAD staining. Furthermore, expression analysis of pro-apoptotic gene Bax and anti-apoptotic gene Bcl-2 by real-time PCR showed 10-fold increase in expression of Bax and 16-fold decrease in expression of Bcl-2 after exposure of cells to ZnO-NPs. Well diffusion method did not show effective antibacterial activities of synthesized ZnO-NPs against both gram-negative and gram-positive bacteria. All the results confirm that the ZnO-NPs synthesized in the present work are a potential candidate to induce ROS and oxidative stress that lead to cytotoxicity in cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muhammad, W., Khan, M. A., Nazir, M., Siddiquah, A., Mushtaq, S., Hashmi, S. S., & Abbasi, B. H. (2019). Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: in-vitro biological applications, biocompatibility and their potential towards HepG2 cell line. Materials Science and Engineering: C, 103, 109740.

    Article  Google Scholar 

  2. Mazzola, L. (2003). Commercializing nanotechnology. Nature Biotechnology, 21(10), 1137–1143.

    Article  Google Scholar 

  3. Hoseini, S. J., Darroudi, M., Oskuee, R. K., Gholami, L., & Zak, A. K. (2015). Honey-based synthesis of ZnO nanopowders and their cytotoxicity effects. Advanced Powder Technology, 26(3), 991–996.

    Article  Google Scholar 

  4. Hadia, N., García-Granda, S., & García, J. R. (2014). Effect of the temperature on structural and optical properties of zinc oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 14(7), 5443–5448.

    Article  Google Scholar 

  5. Padalia, H., & Chanda, S. (2017). Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract. Artificial Cells, Nanomedicine, and Biotechnology, 45(8), 1751–1761.

    Article  Google Scholar 

  6. Vigneshwaran, N., Kumar, S., Kathe, A., Varadarajan, P., & Prasad, V. (2006). Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology, 17(20), 5087.

    Article  Google Scholar 

  7. Jain, N., Bhargava, A., Tarafdar, J. C., Singh, S. K., & Panwar, J. (2013). A biomimetic approach towards synthesis of zinc oxide nanoparticles. Applied Microbiology and Biotechnology, 97(2), 859–869.

    Article  Google Scholar 

  8. Tarafdar, J., Agrawal, A., Raliya, R., Kumar, P., Burman, U., & Kaul, R. (2012). ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Advanced Science, Engineering and Medicine, 4(4), 324–328.

    Article  Google Scholar 

  9. Prashanth, G., Prashanth, P., Nagabhushana, B., Ananda, S., Krishnaiah, G., Nagendra, H., Sathyananda, H., Rajendra Singh, C., Yogisha, S., & Anand, S. (2018). Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels. Artificial Cells, Nanomedicine, and Biotechnology, 46(5), 968–979.

    Article  Google Scholar 

  10. Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566.

    Article  Google Scholar 

  11. Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M., & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8(1), 82–88.

    Google Scholar 

  12. Saha, R., Subramani, K., Raju, S. A. K. P. M., Rangaraj, S., & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80–91.

    Article  Google Scholar 

  13. Luque, P., Nava, O., Soto-Robles, C., Vilchis-Nestor, A., Garrafa-Galvez, H., & Castro-Beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29(20), 17638–17643.

    Google Scholar 

  14. Ngoepe, N., Mbita, Z., Mathipa, M., Mketo, N., Ntsendwana, B., & Hintsho-Mbita, N. (2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44(14), 16999–17006.

    Article  Google Scholar 

  15. Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91–95.

    Article  Google Scholar 

  16. Mahendra, C., Murali, M., Manasa, G., Ponnamma, P., Abhilash, M., Lakshmeesha, T., Satish, A., Amruthesh, K., & Sudarshana, M. (2017). Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microbial Pathogenesis, 110, 620–629.

    Article  Google Scholar 

  17. Umar, H., Kavaz, D., & Rizaner, N. (2019). Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal of Nanomedicine, 14, 87.

    Article  Google Scholar 

  18. Sukri, S. N. A. M., Shameli, K., Wong, M. M.-T., Teow, S.-Y., Chew, J., & Ismail, N. A. (2019). Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. Journal of Molecular Structure, 1189, 57–65.

    Article  Google Scholar 

  19. Abbasi, B. H., Shah, M., Hashmi, S. S., Nazir, M., Naz, S., Ahmad, W., Khan, I. U., & Hano, C. (2019). Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of Milk thistle (Silybum marianum). Nanomaterials, 9(8), 1171.

    Article  Google Scholar 

  20. Happy, A., Soumya, M., Kumar, S. V., Rajeshkumar, S., Sheba, R. D., Lakshmi, T., & Nallaswamy, V. D. (2019). Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochemistry and Biophysics Reports, 17, 208–211.

    Article  Google Scholar 

  21. Senthilkumar, N., NandhaKumar, E., Priya, P., Soni, D., Vimalan, M., & Potheher, I. V. (2017). Synthesis, anti-bacterial, antiarthritic, anti-oxidant and in-vitro cytotoxicity activities of ZnO nanoparticles using leaf extract of Tectona Grandis (L.). New Journal of Chemistry, 41, 10347–10356.

    Article  Google Scholar 

  22. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242.

    Article  Google Scholar 

  23. Doğan SŞ, Kocabaş A (2019) Green synthesis of ZnO nanoparticles with Veronica multifida and their antibiofilm activity. Human & Experimental Toxicology 0960327119888270.

  24. Rauf, M. A., Oves, M., Rehman, F. U., Khan, A. R., & Husain, N. (2019). Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomedicine & Pharmacotherapy, 116, 108983.

    Article  Google Scholar 

  25. Alam F, Suleman S Study of phytochemistry and antioxidant activity of Hertia intermedia (Boiss.) Flowers of Balochistan.

  26. Esmaeili, S., Hamzeloo-Moghadam, M., Ghaffari, S., & Mosaddegh, M. (2014). Cytotoxic activity screening of some medicinal plants from south of Iran. Research Journal of Pharmacognosy, 1(4), 19–25.

    Google Scholar 

  27. McGaw, L., & Eloff, J. (2005). Screening of 16 poisonous plants for antibacterial, anthelmintic and cytotoxic activity in vitro. South African Journal of Botany, 71(3), 302–306.

    Article  Google Scholar 

  28. Jakupovic, J., Bohlmann, F., & Grenz, M. (1989). Furoeremophilanes from Hertia pallens. Phytochemistry, 28(11), 3231–3232.

    Article  Google Scholar 

  29. Akhgar, M., Ghazanfari, D., & Shariatifar, M. (2012). Chemical composition of the essential oil of Hertia intermedia (Boiss.) O. Kuntze from Iran. Journal of Essential Oil-Bearing Plants, 15(3), 360–363.

    Article  Google Scholar 

  30. Akhgar, M., Shariatifar, M., Akhgar, A., Moradalizadeh, M., & Faghihi-Zarandi, A. (2012). Chemical composition and antibacterial activity of the leaf essential oil from Hertia intermedia. Chemistry of Natural Compounds, 48(2), 329–331.

    Article  Google Scholar 

  31. Soltanian, S., Sheikhbahaei, M., Mansour, M., & Behjat, K. K. (2020). Evaluation of anticancer, antioxidant and antibacterial properties of methanol extract of three Acantholimon Boiss. species. Avicenna Journal of Phytomedicine articles in press. https://doi.org/10.22038/AJP.2020.15805.

  32. Soltanian, S., Sheikhbahaei, M., & Mohamadi, N. (2017). Cytotoxicity evaluation of methanol extracts of some medicinal plants on P19 embryonal carcinoma cells. J Appl Pharm Sci, 7(7), 142–149.

    Google Scholar 

  33. Soltanian, S., Mohamadi, N., Rajaei, P., Khodami, M., & Mohammadi, M. (2019). Phytochemical composition, and cytotoxic, antioxidant, and antibacterial activity of the essential oil and methanol extract of Semenovia suffruticosa. Avicenna Journal of Phytomedicine, 9(2), 143.

    Google Scholar 

  34. Li, H.-B., Jiang, Y., Wong, C.-C., Cheng, K.-W., & Chen, F. (2007). Evaluation of two methods for the extraction of antioxidants from medicinal plants. Analytical and Bioanalytical Chemistry, 388(2), 483–488.

    Article  Google Scholar 

  35. Singh, N., & Haque, F. Z. (2016). Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique. Optik, 127(1), 174–177.

    Article  Google Scholar 

  36. Ravindran, C., Manokari, M., & Shekhawat, M. S. (2016). Biogenic production of zinc oxide nanoparticles from aqueous extracts of Duranta erecta L. World Scientific News, 28, 30–40.

    Google Scholar 

  37. Safawo, T., Sandeep, B., Pola, S., & Tadesse, A. (2018). Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano, 3, 56–63.

    Article  Google Scholar 

  38. Bulatov, E., Sayarova, R., Mingaleeva, R., Miftakhova, R., Gomzikova, M., Ignatyev, Y., Petukhov, A., Davidovich, P., Rizvanov, A., & Barlev, N. A. (2018). Isatin-Schiff base-copper (II) complex induces cell death in p53-positive tumors. Cell Death Discovery, 4(1), 1–9.

    Article  Google Scholar 

  39. Marimoutou, M., Le Sage, F., Smadja, J., d’Hellencourt, C. L., Gonthier, M.-P., & Robert-Da Silva, C. (2015). Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H 2 O 2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes. Journal of Inflammation, 12(1), 10.

    Article  Google Scholar 

  40. Cui, D., Liang, T., Sun, L., Meng, L., Yang, C., Wang, L., Liang, T., & Li, Q. (2018). Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical Biology, 56(1), 528–534.

    Article  Google Scholar 

  41. Yuvakkumar, R., Suresh, J., Saravanakumar, B., Nathanael, A. J., Hong, S. I., & Rajendran, V. (2015). Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 250–258.

    Article  Google Scholar 

  42. Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., Masum, M. M. I., Hossain, A., Mo, J., & Li, B. (2019). Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. Oryzae. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 341–352.

    Article  Google Scholar 

  43. Van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B., & Reutelingsperger, C. P. (1998). Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry: The Journal of the International Society for Analytical Cytology, 31(1), 1–9.

    Article  Google Scholar 

  44. Zimmermann, M., & Meyer, N. (2011). Annexin V/7-AAD staining in keratinocytes (pp. 57–63). In: Mammalian Cell Viability. Springer.

    Google Scholar 

  45. Makarov, V., Love, A., Sinitsyna, O., Makarova, S., Yaminsky, I., Taliansky, M., & Kalinina, N. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия), 6(1 (20)), 35–44.

    Article  Google Scholar 

  46. Kumari, R., Barsainya, M., & Singh, D. P. (2017). Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environmental Science and Pollution Research, 24(5), 4645–4654.

    Article  Google Scholar 

  47. Chouhan, H. S., & Sharma, A. (2014). International journal of green and herbal chemistry. International Journal, 3(2), 425–433.

    Google Scholar 

  48. Gnanasangeetha, D., & Thambavani, D. S. (2013). Biogenic production of zinc oxide nanoparticles using Acalypha indica. Journal of Chemical, Biological and Physical Sciences (JCBPS), 4(1), 238.

    Google Scholar 

  49. Manokari, M., & Shekhawat, M. S. (2015). Biogenesis of zinc oxide nanoparticles using aqueous extracts of Hemidesmus indicus (l.) R. Br. Int J Res Stud Microbiol Biotechnol, 1(1), 20–24.

    Google Scholar 

  50. Prashanth, G., Prashanth, P., Bora, U., Gadewar, M., Nagabhushana, B., Ananda, S., Krishnaiah, G., & Sathyananda, H. (2015). In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala International Journal of Modern Science, 1(2), 67–77.

    Article  Google Scholar 

  51. Al-Sheddi, E. S., Farshori, N. N., Al-Oqail, M. M., Al-Massarani, S. M., Saquib, Q., Wahab, R., Musarrat, J., Al-Khedhairy, A. A., & Siddiqui, M. A. (2018). Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications, 2018, 9390784.

    Article  Google Scholar 

  52. Zhang, G., Gurtu, V., Kain, S. R., & Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques, 23(3), 525–531.

    Article  Google Scholar 

  53. Mohanta, Y. K., Panda, S. K., Jayabalan, R., Sharma, N., Bastia, A. K., & Mohanta, T. K. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences, 4, 14.

    Article  Google Scholar 

  54. Kajani, A. A., Zarkesh-Esfahani, S. H., Bordbar, A.-K., Khosropour, A. R., Razmjou, A., & Kardi, M. (2016). Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. Journal of Molecular Liquids, 223, 549–556.

    Article  Google Scholar 

  55. Wang, C., Hu, X., Gao, Y., & Ji, Y. (2015). ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. BioMed Research International, 2015, 423287.

    Google Scholar 

  56. Rosarin, F. S., Arulmozhi, V., Nagarajan, S., & Mirunalini, S. (2013). Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pacific Journal of Tropical Medicine, 6(1), 1–10.

    Article  Google Scholar 

  57. Bai, D.-P., Zhang, X.-F., Zhang, G.-L., Huang, Y.-F., & Gurunathan, S. (2017). Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. International Journal of Nanomedicine, 12, 6521.

    Article  Google Scholar 

  58. Saliani, M., Jalal, R., & Goharshadi, E. K. (2016). Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells. Nanomedicine Journal, 3(1), 1–14.

    Google Scholar 

  59. Manke, A., Wang, L., & Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013, 942916.

    Article  Google Scholar 

  60. Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75.

    Article  Google Scholar 

  61. Zare, E., Pourseyedi, S., Khatami, M., & Darezereshki, E. (2017). Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity. Journal of Molecular Structure, 1146, 96–103.

    Article  Google Scholar 

  62. Ciftci, H., TÜRK, M., TAMER, U., Karahan, S., & Menemen, Y. (2013). Silver nanoparticles: Cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turkish Journal of Biology, 37(5), 573–581.

    Article  Google Scholar 

  63. Oltval, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell, 74(4), 609–619.

    Article  Google Scholar 

  64. Krishnaraj, C., Jagan, E., Ramachandran, R., Abirami, S., Mohan, N., & Kalaichelvan, P. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochemistry, 47(4), 651–658.

    Article  Google Scholar 

  65. Baharara, J., Namvar, F., Ramezani, T., Mousavi, M., & Mohamad, R. (2015). Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules, 20(2), 2693–2706.

    Article  Google Scholar 

  66. Salehi, S., Shandiz, S. A. S., Ghanbar, F., Darvish, M. R., Ardestani, M. S., Mirzaie, A., & Jafari, M. (2016). Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. International Journal of Nanomedicine, 11, 1835.

    Google Scholar 

  67. Ahamed, M., Akhtar, M. J., Raja, M., Ahmad, I., Siddiqui, M. K. J., AlSalhi, M. S., & Alrokayan, S. A. (2011). ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: Role of oxidative stress. Nanomedicine: Nanotechnology, Biology and Medicine, 7(6), 904–913.

    Article  Google Scholar 

  68. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870.

    Article  Google Scholar 

  69. Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., & Kannan, S. (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochemistry, 47(12), 2405–2410.

    Article  Google Scholar 

  70. Khan, M. F., Hameedullah, M., Ansari, A. H., Ahmad, E., Lohani, M., Khan, R. H., Alam, M. M., Khan, W., Husain, F. M., & Ahmad, I. (2014). Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. International Journal of Nanomedicine, 9, 853.

    Article  Google Scholar 

  71. Shaik, M. R., Khan, M., Kuniyil, M., Al-Warthan, A., Alkhathlan, H. Z., Siddiqui, M. R. H., Shaik, J. P., Ahamed, A., Mahmood, A., & Khan, M. (2018). Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability, 10(4), 913.

    Article  Google Scholar 

  72. Ahmadi Shadmehri, A., Namvar, F., Miri, H., Yaghmaei, P., & Nakhaei Moghaddam, M. (2019). Assessment of antioxidant and antibacterial activities of zinc oxide nanoparticles, graphene and graphene decorated by zinc oxide nanoparticles. International Journal of Nano Dimension, 10(4), 350–358.

    Google Scholar 

  73. Nagajyothi, P., Sreekanth, T., Tettey, C. O., Jun, Y. I., & Mook, S. H. (2014). Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorganic & Medicinal Chemistry Letters, 24(17), 4298–4303.

    Article  Google Scholar 

  74. Y-g, Y., Wang, Y.-h., Xing, H.-H., & Gurunathan, S. (2017). Quercetin-mediated synthesis of graphene oxide–silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma. International Journal of Nanomedicine, 12, 5819.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mansour Mirtadzadini at Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, for plant collection and identification.

Funding

This study was funded by Bam University of Medical Science, Bam, Iran (grant number: 97000081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mohammadi Tahroudi.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanian, S., Sheikhbahaei, M., Mohamadi, N. et al. Biosynthesis of Zinc Oxide Nanoparticles Using Hertia intermedia and Evaluation of its Cytotoxic and Antimicrobial Activities. BioNanoSci. 11, 245–255 (2021). https://doi.org/10.1007/s12668-020-00816-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00816-z

Keywords

Navigation