Skip to main content
Log in

Allelotoxicity of Soils: A Review

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The review considers the basic terms characterizing the accumulation of allelotoxic compounds in soil and justifies the need to study soil allelotoxicity and approaches to reduce its negative impact on plants. As is shown, the main sources forming soil allelotoxicity are plant and microbial exudates and the substances released during the decomposition of plant residues. Different classes of allelotoxic substances and putative mechanisms underlying the transformation of allelotoxins in soil are considered as well as the capabilities and limitations of the available approaches to the assessment of soil allelotoxicity. The presence of allelotoxins is poorly detectable by chemical assays; correspondingly, bioassays are most likely to be the best method for this purpose. Analysis of the published data suggests the approaches to decrease the negative impact of soil allelotoxicity, which rely on a decrease in the concentration or activity of allelotoxins in soil or at the seed–soil interface utilizing fixation of allelotoxins on the applied sorbents or activation of the consumption of allelotoxins by microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Autotolerant, that is, tolerant to itself and, consequently, not causing any soil fatigue; autointolerant, that is intolerant to itself, causes pronounced soil fatigue under the culture of itself; allotolerant, that is, tolerant to different allelopathic effects, is thus insensitive to the soil fatigue caused by another plant species; and allointolerant is intolerant to other species as neighbors and preferring to exist in its own ambience.

  2. As has been shown, several thousands of chemical compounds of phenol derivatives are biologically active [1, 11]. The same is true for flavonoids [68].

REFERENCES

  1. A. P. Volynets, Phenolic Compounds in Vital Activity of Plants (Belaruskaya Navuka, Minsk, 2015) [in Russian].

    Google Scholar 

  2. A. M. Grodzinskii, G. P. Bogdan, and E. A. Golovko, Allelopathic Soil Fatigue (Naukova Dumka, Kyiv, 1979) [in Russian].

    Google Scholar 

  3. N. N. Ignat’ev, O. V. Selitskaya, and A. O. Biryukov, “Peculiarities of stimulating and inhibiting activity of greenhouse soil when using plant growth regulators,” Izv. Timiryazevsk. S-kh. Akad., No. 4, 3–10 (2005).

  4. S. N. Konoshina, Candidate’s Dissertation in Agriculture (Orel, 2000).

  5. S. N. Konoshina, “Influence of physiologically active substances of higher plants on the formation of allelopathic activity of the soil,” Sovrem. Probl. Nauki Obraz., No. 3, 617–617 (2015).

  6. N. A. Krasil’nikov, Soil Microorganisms and Higher Plants (Akad. Nauk SSSR, Moscow, 1958) [in Russian].

    Google Scholar 

  7. V. T. Lobkov, The Use of Soil-Biological Factor in Agriculture: Monograph (Orel, 2017) [in Russian].

    Google Scholar 

  8. V. T. Lobkov, Soil Fatigue when Growing Field Crops (Kolos, Moscow, 1994) [in Russian].

    Google Scholar 

  9. E. A. Mlechko and A. V. Motrenko, “Allelopathic effect of an aqueous extract of Ethiopian sage (Salvia Aethiopis L.) on the germination of seeds of test plants,” Vestn. Volgogr. Gos. Univ. 9 (13), 10–14 (2015).

    Google Scholar 

  10. D. I. Potapov, A. P. Shvarov, I. V. Gorepekin, O. A. Salimgareeva, and G. N. Fedotov, “Effect of soil samples preparation on their thermal hydrophysical properties and allelotoxicity,” Eurasian Soil Sci. 55 (3), 330–338 (2022). https://doi.org/10.1134/S1064229322030115

    Article  Google Scholar 

  11. L. D. Prusakova, V. I. Kefeli, S. L. Belopukhov, V. V. Vakulenko, and S. A. Kuznetsova, “Role of phenolic compounds in plants,” Agrokhimiya 7, 86–96 (2008).

    Google Scholar 

  12. L. K. Sechnyak, N. A. Kindruk, O. K. Slyusarenko, V. G. Ivashchenko, and E. D. Kuznetsov, Ecology of Wheat Seeds (Kolos, Moscow, 1983) [in Russian].

    Google Scholar 

  13. Yu. A. Sokolov, Elicitors and Their Application in Crop Production (Belaruskaya Navuka, Minsk, 2016) [in Russian].

    Google Scholar 

  14. RF Patent No. 2181238 (2002).

  15. G. N. Fedotov, I. V. Gorepekin, and L. V. Lysak, “Possibility of reducing soil allelotoxicity for grain crops,” Eurasian Soil Sci. 53 (1), 110–116 (2020).

    Article  Google Scholar 

  16. G. N. Fedotov, I. V. Gorepekin, A. D. Pozdnyakova, Yu. A. Zavgorodnyaya, and S. A. Isakova, “Relationship of land use history and chemical properties of soils with their allelotoxicity,” Eurasian Soil Sci. 53 (3), 389–395 (2020).

    Article  Google Scholar 

  17. G. N. Fedotov, S. A. Shoba, and I. V. Gorepekin, “Soil allelotoxicity and methods to reduce its adverse influence at the initial stage of plant development,” Eurasian Soil Sci. 53 (8), 1165–1172 (2020).

    Article  Google Scholar 

  18. G. N. Fedotov, S. A. Shoba, M. F. Fedotova, and I. V. Gorepekin, “The impact of soil allelotoxicity on germination of grain seeds,” Eurasian Soil Sci. 52 (4), 448–454 (2019).

    Article  Google Scholar 

  19. V. K. Chebotar’, A. V. Shcherbakov, E. N. Shcherbakova, S. N. Maslennikova, A. N. Zaplatkin, and N. V. Mal’fanova, “Endophytic bacteria as a promising biotechnological resource and their diversity,” S-kh. Biol., No. 5, 648–654 (2015).

  20. S. A. Shoba, T. A. Gracheva, A. L. Stepanov, G. N. Fedotov, and I. V. Gorepekin, “On the nature of the influence of some mycelial Actinobacteria on the spring wheat seeds germination in soils,” Dokl. Biol. Sci. 498, 85–88 (2021). https://doi.org/10.1134/S0012496621030030

    Article  Google Scholar 

  21. M. J. Reigosa, N. Pedrol, and L. González (Eds.), Allelopathy: A Physiological Process with Ecological Implications (Springer Science & Business Media, The Netherlands, 2006).

    Google Scholar 

  22. Allelopathy: Current Trends and Future Applications, Ed. by Z. A. Cheema, M. Farooq, and A. Wahid (Springer Science & Business Media, Berlin-Heidelberg, 2013).

    Google Scholar 

  23. J. M. Barea, E. Navarro, and E. Montoya, “Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria,” J. Appl. Bacteriol. 40 (2), 129–134 (1976).

    Article  Google Scholar 

  24. R. G. Belz, “Allelopathy in crop/weed interactions—an update,” Pest Manage. Sci. 63 (4), 308–326 (2007).

    Article  Google Scholar 

  25. C. Bertin, X. Yang, and L. A. Weston, “The role of root exudates and allelochemicals in the rhizosphere,” Plant Soil 256 (1), 67–83 (2003).

    Article  Google Scholar 

  26. U. Blum, T. R. Wentworth, K. Klein, A. D. Worsham, L. D. King, T. M. Gerig, and S. W. Lyu, “Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems,” J. Chem. Ecol. 17 (6), 1045–1068 (1991).

    Article  Google Scholar 

  27. L. C. Carvalhais, P. G. Dennis, D. V. Badri, G. W. Tyson, J. M. Vivanco, and P. M. Schenk, “Activation of the jasmonic acid plant defense pathway alters the composition of rhizosphere bacterial communities,” PLoS One 8 (2), e56457 (2013).

    Article  Google Scholar 

  28. B. M. Chen, H. X. Liao, W. B. Chen, H. J. Wei, and S. L. Peng, “Role of allelopathy in plant invasion and control of invasive plants,” Allelopathy J. 41, 155–166 (2017).

    Article  Google Scholar 

  29. F. Cheng and Z. Cheng, “Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy,” Front. Plant Sci. 6, 1–16 (2015).

    Article  Google Scholar 

  30. H. H. Cheng, “A conceptual framework for assessing allelochemicals in the soil environment,” in Allelopathy (Springer, Dordrecht, 1992), pp. 21–29.

    Google Scholar 

  31. C. H. Chou, “Roles of allelopathy in plant biodiversity and sustainable agriculture,” Crit. Rev. Plant Sci. 18 (5), 609–636 (1999).

    Article  Google Scholar 

  32. D. Cipollini, C. M. Rigsby, and E. K. Barto, “Microbes as targets and mediators of allelopathy in plants,” // J. Chem. Ecol. 38 (6), 714–727 (2012).

    Article  Google Scholar 

  33. J. C. Dodd, “The role of arbuscular mycorrhizal fungi in agro-and natural ecosystems,” Outlook Agric. 29 (1), 55–62 (2000).

    Article  Google Scholar 

  34. J. Eder and E. G. Cosio, “Elicitors of plant defense responses,” Int. Rev. Cytol. 148, 1–36.

  35. F. A. Einhellig, “Interactions involving allelopathy in cropping systems,” Agron. J. 88 (6), 886–893 (1996).

    Article  Google Scholar 

  36. J. A. Galán-Pérez, B. Gámiz, and R. Celis, “Determining the effect of soil properties on the stability of scopoletin and its toxicity to target plants,” Biol. Fertil. Soils 57 (5), 643–655 (2021).

    Article  Google Scholar 

  37. B. Gámiz, G. Facenda, and R. Celi, “Nanoengineered sorbents to increase the persistence of the allelochemical carvone in the rhizosphere,” J. Agric. Food Chem. 67 (2), 589–596.

  38. R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60 (4), 579–598 (2010).

    Article  Google Scholar 

  39. A. Hussain and V. Vančura, “Formation of biologically active substances by rhizosphere bacteria and their effect on plant growth,” Folia Microbiol. 15 (6), 468–478 (1970).

    Article  Google Scholar 

  40. D. R. Inderjit Moral, “Is separating resource competition from allelopathy realistic?,” Bot. Rev. 63 (3), 221–230 (1997).

    Article  Google Scholar 

  41. J. Inderjit Weiner, “Plant allelochemical interference or soil chemical ecology?,” Perspect. Plant Ecol., Evol. Syst. 4 (1), 3–12 (2001).

    Article  Google Scholar 

  42. G. Jilani, S. Mahmood, A. N. Chaudhry, I. Hassan, and M. Akram, “Allelochemicals: sources, toxicity and microbial transformation in soil—a review,” Ann. Microbiol. 58 (3), 351–357 (2008).

    Article  Google Scholar 

  43. J. F. Johnson, D. L. Allan, and C. P. Vance, “Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus,” Plant Physiol. 104 (2), 657–665 (1994).

    Article  Google Scholar 

  44. . Kaur, R. Kaur, S. Kaur, and I. T. Baldwin, “Taking 63ic effects of released metabolites,” PLoS One 4 (3), 1–6 (2009)

    Google Scholar 

  45. K. Kobayashi, “Factors affecting phytotoxic activity of allelochemicals in soil,” Weed Biol. Manage. 4 (1), 1–7 (2004).

    Article  Google Scholar 

  46. C. H. Kong, T. D. Xuan, T. D. Khanh, H. D. Tran, and N. T. Trung, “Allelochemicals and signaling chemicals in plants,” Molecules 24 (15), 2737 (2019).

    Article  Google Scholar 

  47. S. Latif, G. Chiapusio, and L. A. Weston, “Allelopathy and the role of allelochemicals in plant defense,” Adv. Bot. Res. 82, 19–54 (2017).

    Article  Google Scholar 

  48. Y. P. Li, Y. L. Feng, Y. J. Chen, et al., “Soil microbes alleviate allelopathy of invasive plants,” Sci. Bull. 60, 1083–1109 (2015).

    Article  Google Scholar 

  49. X. G. Li, C. F. Ding, K. Hua, T. L. Zhang, Y. N. Zhang, L. Zhao, Y. R. Yang, J. G. Liu, and X. X. Wang, “Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy,” Soil Biol. Biochem. 78, 149–159 (2014).

    Article  Google Scholar 

  50. S. W. Mattner, “The impact of pathogens on plant interference and allelopathy,” in Allelochemicals: Biological Control of Plant Pathogens and Diseases, Ed. by M. Inderjit (Springer, 2006), pp. 79–101.

    Google Scholar 

  51. T. M. McCalla and F. A. Haskins, “Phytotoxic substances from soil microorganisms and crop residues,” Bacteriol. Rev. 28 (2), 181–207 (1964).

    Article  Google Scholar 

  52. W. Mushtaq and M. B. Siddiqui, “Allelopathy in Solanaceae plants,” J. Plant Prot. Res. 58 (1), (2018).

  53. K. K. Pal and B. M. Gardener, “Biological control of plant pathogens,” // Plant Health Instr., 1–25 (2006).

  54. N. A. Pavliuchenko and N. I. Dovhaliuk, “Phytotechnological foundations of fighting with allelopathic soil sickness in Syringa vulgaris L. monocultural plantings,” Plant Introd. 82, 77–84 (2019).

    Google Scholar 

  55. M. Real, G. Facenda, and R. Celis, “Sorption and dissipation of the allelochemicals umbelliferone and salicylic acid in a Mediterranean soil environment: effect of olive-mill waste addition,” Sci. Total Environ. 774, 145027 (2021).

    Article  Google Scholar 

  56. M. Real, B. Gámiz, R. López-Cabeza, and R. Celis, “Sorption, persistence, and leaching of the allelochemical umbelliferone in soils treated with nanoengineered sorbents,” Sci. Rep. 9 (1), 1–11 (2019).

    Article  Google Scholar 

  57. F. I. Santi Ferrara, Z. M. Oliveira, H. H. S. Gonzales, E. I. S. Floh, and H. R. Barbosa, “Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances,” Plant Soil 353 (1), 409–417 (2012).

    Article  Google Scholar 

  58. A. Scavo, C. Abbate, and G. Mauromicale, “Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system,” Plant Soil 442 (1), 23–48 (2019).

    Article  Google Scholar 

  59. S. D. Schrey and M. T. Tarkka, “Friends and foes: streptomycetes as modulators of plant disease and symbiosis,” Antonie Van Leeuwenhoek 94 (1), 11–19 (2008).

    Article  Google Scholar 

  60. Y. Shen, H. Tang, W. Wu, H. Shang, D. Zhang, X. Zhan, and B. Xing, “Role of nano-biochar in attenuating the allelopathic effect from Imperata cylindrica on rice seedlings,” Environ. Sci.: Nano. 7 (1), 116–126 (2020).

    Google Scholar 

  61. N. Tharayil, P. C. Bhowmik, and B. Xing, “Bioavailability of allelochemicals as affected by companion compounds in soil matrices,” J. Agric. Food Chem. 56 (10), 3706–3713 (2008).

    Article  Google Scholar 

  62. A. Tomilov, N. Tomilova, D. H. Shin, D. Jamison, M. Torres, R. Reagan, H. McGray, T. Horning, R. Truong, A. Nava, A. Nava, and J. I. Yoder, “Chemical signaling between plants,” in Chem. Ecology: From Gene to Ecosystem (Springer, The Netherlands, 2006), pp. 55–69.

    Google Scholar 

  63. D. Treutter, “Significance of flavonoids in plant resistance: a review,” Environ. Chem. Lett. 4 (3), 147–157 (2006).

    Article  Google Scholar 

  64. O. Tyc, C. Song, J. S. Dickschat, M. Vos, and P. Garbeva, “The ecological role of volatile and soluble secondary metabolites produced by soil bacteria,” Trends Microbiol. 25 (4), 280–292 (2017).

    Article  Google Scholar 

  65. R. Vinken, A. Schäffer, and R. Ji, “Abiotic association of soil-borne monomeric phenols with humic acids,” Org. Geochem. 36 (4), 583–593 (2005).

    Article  Google Scholar 

  66. J. R. Vyvyan, “Allelochemicals as leads for new herbicides and agrochemicals,” Tetrahedron 58 (9), 1631–1646 (2002).

    Article  Google Scholar 

  67. T. L. Weir, S. Park and J. M. Vivanco, “Biochemical and physiological mechanisms mediated by allelochemicals,” Curr. Opin. Plant Biol. 7 (4), 472–479 (2004).

    Article  Google Scholar 

  68. L. A. Weston and U. Mathesius, “Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy,” J. Chem. Ecol. 39 (2), 283–297 (2013).

    Article  Google Scholar 

  69. A. G. Zavarzina, N. N. Danchenko, V. V. Demin, Z. S. Artemyeva, and B. M. Kogut, “Humic substances: hypotheses and reality (a review),” Eurasian Soil Sci. 54 (12), 1826–1854 (2021). https://doi.org/10.1134/S1064229321120164

    Article  Google Scholar 

  70. Z. A. Zahir, M. Arshad, and W. T. Frankenberger, “Plant growth promoting rhizobacteria: applications and perspectives in agriculture,” Adv. Agron. 81, 97–168 (2004).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-14-00107 “Methodological Basis for Assessment of Soil Production Potential at the Federal, Regional, and Local Levels”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gorepekin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorepekin, I.V., Fedotov, G.N. & Shoba, S.A. Allelotoxicity of Soils: A Review. Eurasian Soil Sc. 55, 1804–1812 (2022). https://doi.org/10.1134/S1064229322700090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322700090

Keywords:

Navigation