Skip to main content
Log in

Allelochemicals: sources, toxicity and microbial transformation in soil —a review

  • Ecological and Environmental Microbiology
  • Review
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Soil microorganisms interact with plants in diversified manner ranging from mobilising nutrients and enhancing their growth, to inducing diseases. They also produce allelochemicals directly or indirectly through conversion from other compounds. In order to hamper plant growth, allelochemicals must accumulate and persist at phytotoxic levels in the rhizosphere soil. However, after their entry into environment, persistence, availability and biological activities of allelochemicals are influenced by microorganisms. Transformation of allelochemicals by soil microbes may result into the compounds with modified biological properties. Such bio-transformations affect the overall allelopathic capability of the producer plant in a direct manner. Several reports describe the allelopathic significance of microbial metabolism products. For instance, a bacteriumActinetobacter calcoaceticus, can convert 2 (3H)-benzoxazolinone (BOA) to 2,2′-oxo-l,l′-azobenzene (AZOB) which is more inhibitory to some plants. On the contrary, bacteriumPseudomonas putida catabolises juglone in soils beneath walnut trees; otherwise, juglone accumulates at phytotoxic levels. This review article describes the nature of microbially produced allelochemicals, and the ways to mediate microbial degradation of putative allelochemicals. The given information develops an understanding of persistence, fate and phytotoxicity of allelochemicals in the natural environment, and also points out the possible solution of the problems due to microbial interventions in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad R., Jilani G., Arshad M., Zahir Z.A., Khalid A. (2007). Bioconversion of organic wastes for their recycling in agriculture: An overview of perspectives and prospects. Ann. Microbiol., 57 (4): 471–479.

    Article  Google Scholar 

  • Al-Turki A.I., Dick W.A. (2003). Myrosinase activity in soil. Soil Sci. Soc. Am. J., 67: 139–145.

    CAS  Google Scholar 

  • An M., Johnson I.R., Lovett J.V. (1996). Mathematical modeling of allelopathy: I. Phytotoxicity caused by plant residues during decomposition. Allelopathy J., 3: 33–42.

    Google Scholar 

  • An M., Pratley J.E., Ha T. (2000). Phytotoxicity ofVulpia residues: iv. Dynamics of allelochemicals during decomposition of vulpia residues and their corresponding phytotoxicity. J. Chem. Ecol., 26 (11): 2603–2617.

    Article  CAS  Google Scholar 

  • An M., Johnson I.R., Lovett J.V. (2002). Mathematical modelling of residue allelopathy: the effects of intrinsic and extrinsic factors. Plant Soil, 246: 11–22.

    Article  CAS  Google Scholar 

  • Bais H., Walker T., Stermitz F., Hufbauer R., Vivanco J. (2002). Enantiomeric-dependent phytotoxic and antimicrobial activity of (+/−)-catechin. A rhizosecreted racemic mixture from Spotted Knapweed. Plant Physiol., 128: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  • Bais H.P., Vapachedu R., Gilroy S., Callaway R., Vivanco J. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301: 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  • Baumeler A., Hesse M., Werner C. (2000). Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genusAphelandra (Acanthaceae). Phytochemistry, 53: 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Bertin C., Yang X., Weston L.A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 256: 67–83.

    Article  CAS  Google Scholar 

  • Blum U. (1998). Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol., 24: 685–708.

    Article  CAS  Google Scholar 

  • Blum U., Shafer S.R., Lehman M.E. (1999). Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Crit. Rev. Plant Sci., 18: 673–693.

    Article  CAS  Google Scholar 

  • Carballeira A., Carral E., Reigosa M.J. (1988). Asymmetric small-scale distribution and allelopathy: Interaction betweenRumex obtusifolius L. and meadow species. J. Chem. Ecol., 14: 1775–1786.

    Article  Google Scholar 

  • Chiapusio G., Pellissier F., Gallet C. (2004). Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. J. Exp. Bot., 55 (402): 1587–1592.

    Article  CAS  PubMed  Google Scholar 

  • Chou C.H., Lin H.J. (1976). Autointoxication mechanism ofOryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol., 2: 353–367.

    Article  CAS  Google Scholar 

  • Dalton B.R. (1999). The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: Methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, Dakshini K.M.M., Foy C.L., Eds, Principles and Practices in Plant Ecology: Allelochemical Interactions, CRC Press, Boca Raton, FL, pp. 57–74.

    Google Scholar 

  • Dalton B.R., Blum U., Weed S.B. (1989). Differential sorption of exogenously applied ferulic, p-courmaric, p-hydroxybenzoic, and vanillic acids in soil. Soil Sci. Soc. Am. J., 53: 757–762.

    CAS  Google Scholar 

  • Dornbos D.L. Jr, Spencer G.F., Miller R.W. (1990). Merdicarpin delays alfalfa seed germination and seedling growth. Crop Sci., 30: 162–166.

    Article  CAS  Google Scholar 

  • Elijarrat E., Barcelo D. (2001). Sample handling and analysis of allelochemical compounds in plants. Trends Anal. Chem., 20: 584–590.

    Article  Google Scholar 

  • Etzerodt T., Nielsen S.T., Mortensen A.G., Christophersen C., Fomsgaard I.S. (2006). Elucidating the transformation pattern of the cereal allelochemical 6-methoxy-2-benzoxazolinone (MBOA) and the trideuterio methoxy analogue [D3]-MBOA in soil. J. Agri. Food Chem., 54: 1075–1085

    Article  CAS  Google Scholar 

  • Feucht W., Treutter D. (1999). The role of flavan-3-ols and proanthocyanidins in plant defence. In: Inderjit, Dakshini K.M.M., Foy C.L., Eds, Principles and Practices in Plant Ecology: Allelochemical Interactions, CRC Press, Boca Raton, FL, pp. 307–338.

    Google Scholar 

  • Fomsgaard I.S., Mortensen A.G., Gents M.B., Understrup A.G. (2004). Time-dependent transformation of varying concentrations of the hydroxamic acid metabolites MBOA and BOA in soil. In: Proceedings of Second European Allelopathy Symposium. Allelopathy — from Understanding to Application, FATEALLCHEM Workshop “Fate and Toxicity of Allelochemicals (Natural Plant Toxins) in Relation to Environment and Consumer”, June 3–5; Institute of Soil Science and Plant Cultivation Press Services, Pulawy, Poland, pp. 61–63.

    Google Scholar 

  • Fomsgaard I.S., Mortensen A.G., Idinger J., Coja T., Blümel S. (2006). Transformation of benzoxazinones and derivatives and microbial activity in the test environment of soil ecotoxicological tests onPoecilus cupreus andFolsomia candida. J. Agri. Food Chem., 54: 1086–1092.

    Article  CAS  Google Scholar 

  • Friebe A., Wieland I., Schulz M. (1996). Tolerance ofAvena sativa to the allelochemical benzoxazolinone. Degradation of BOA by root-colonizing bacteria. J. Appl. Bot. — Angew. Bot., 70: 150–154.

    CAS  Google Scholar 

  • Friebe A., Vilich V., Hennig L., Kluge M., Sicker D. (1998). Detoxification of benzoxazolinone allelochemicals from wheat byGaeumannomyces graminis var.tritici, G. graminis var.graminis, G. graminis var.avenae, andFusarium culmorum. Appl. Environ. Microbiol., 64: 2386–2391.

    CAS  PubMed  Google Scholar 

  • Gagliardo R.W., Chilton W.S. (1992). Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol., 18: 1683–1691.

    Article  CAS  Google Scholar 

  • Gents M.B., Mortensen A.G., Nielsen S.T., Christoffersen C., Fomsgaard I.S. (2005). Transformation products of 2-benzoxazolinone (BOA) in soil. Chemosphere, 61 (1): 74–84.

    Article  CAS  PubMed  Google Scholar 

  • Giuntini E., Bazzicalupo M., Castaldini M., Fabiani A., Miclaus N., Piccolo R., Ranalli G., Santomassimo F., Zanobini S., Mengoni A. (2006). Genetic diversity of dinitrogen-fixing bacterial communities in soil amended with olive husks. Ann. Microbiol., 56 (2): 83–88.

    Article  CAS  Google Scholar 

  • Glenn A.E., Hinton D.M., Yates I.E., Bacon C.W. (2001). Detoxification of corn antimicrobial compounds as the basis for isolatingFusarium verticillioides and some otherFusarium species from corn. Appl. Environ. Microbiol., 67: 2973–2981.

    Article  CAS  PubMed  Google Scholar 

  • Gries G. (1942). Juglone, the active agent in walnut toxicity. National Nut Growers Association Annual Report, 33: 52–55.

    Google Scholar 

  • Hammond-Kosack K.E., Jones J.D.G. (1996). Resistance gene-dependent plant defense responses. Plant Cell, 8 (10): 1773–1791.

    Article  CAS  PubMed  Google Scholar 

  • Haramoto E.R. (2004). The effects of brassica cover crops on weed dynamics. M.Sc. Thesis. Department of Plant, Soil, and Environmental Sciences, The University of Maine.

  • Harborne J.B., Ed. (1989). Plant phenolics. Methods in Plant Biochemistry No. 1, Academic Press, London.

    Google Scholar 

  • Hong N.H., Xuan T.D., Tsuzuki E., Terao H., Matsuo M., Khanh T.D. (2004). Weed control of four higher plant species in paddy rice fields in southeast Asia. J. Agron. Crop Sci., 190: 59–64.

    Article  Google Scholar 

  • Huang P.M., Wang M.C., Wang M.K. (1999). Catalytic transformation of phenolic compounds in the soils. In: Inderjit, Dakshini K.M.M., Foy C.L., Eds, Principles and Practices in Plant Ecology: Allelochemical Interactions, CRC Press, Boca Raton, FL, pp. 287–306.

    Google Scholar 

  • Inbaraj J.J., Chignell C.F. (2004). Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol., 17 (1): 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Inderjit, Dakshini K.M.M., Einhellig F.A. (1995). Allelopathy: Organisms, Processes and Applications, ACS Symposium Series 582. American Chemical Society, Washington, DC.

    Google Scholar 

  • Inderjit (1996). Plant phenolics in allelopathy. Bot. Rev., 62 (2): 186–202.

    Article  Google Scholar 

  • Inderjit, Dakshini K.M.M. (1999). Bioassey for allelopathy: Interactions of soil organic and inorganic constituents. In: Inderjit, Dakshini K.M.M., Foy C.L., Eds, Principles and Practices in Plant Ecology: Allelochemical Interactions, CRC Press, Boca Raton, FL, pp. 35–44.

    Google Scholar 

  • Inderjit (2001). Soil environment effects on allelochemical activity. Agron. J., 93: 79–84.

    CAS  Google Scholar 

  • Inderjit, Weston L.A. (2003). Root exudation: an overview. In: de Kroon, Visser, E.J.W., Eds, Root Ecology, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Jilani G., Akram A., Ali R.M., Hafeez F.Y., Shamsi I.H., Chaudhry A.N., Chaudhry A.G. (2007). Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann. Microbiol., 57 (2): 177–183.

    Article  CAS  Google Scholar 

  • Kamei H., Koide T., Kojima T., Hashimoto Y., Hasegawa M. (1998). Inhibition of cell growth in culture by quinones. Cancer Biother. Radiopharm., 13 (2): 185–188.

    CAS  PubMed  Google Scholar 

  • Kara O., Asan A. (2007). Microfungal community structure from forest soils in Northern Thrace Region, Turkey. Ann. Microbiol., 57 (2): 149–155.

    Article  Google Scholar 

  • Kohli R.K., Singh H.P., Batish D.R. (2001). Allelopathy in Agroecosystems. Food Products Press, New York.

    Google Scholar 

  • Kong C., Liang W., Hu F., Xu X., Wang P., Jiang Y., Xing B. (2004). Allelochemicals and their transformations in theAgeratum conyzoides intercropped citrus orchard soils. Plant Soil, 264: 149–157.

    Article  CAS  Google Scholar 

  • Kumar P., Gagliardo R.W., Chilton W.S. (1993). Soil transformation of wheat and corn metabolites MBOA and DIM2BOA into aminophenoxazinones. J. Chem. Ecol., 19: 2453–2461.

    Article  CAS  Google Scholar 

  • Lee K.C., Campbell R.W. (1969). Nature and occurrence of juglone inJuglans nigra. Hort. Sci., 4: 297–298.

    CAS  Google Scholar 

  • Lehmann R.G., Cheng H.H., Harsh J.B. (1987). Oxidation of phenolic acids by soil iron and manganese oxides. Soil Sci. Soc. Am. J., 51: 352–356.

    Article  CAS  Google Scholar 

  • Macías F.A., Oliveros-Bastidas A., Marían D., Castellano D., Simonet A.M., Molinillo J.M.G. (2004). Degradation studies on benzoxazinoids. Soil degradation dynamics of 2,4-Dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agri. Food Chem., 52: 6402–6413.

    Article  CAS  Google Scholar 

  • Makino T., Takahashi Y., Sakurai Y., Nanzyo M. (1996). Influence of soil chemical properties on adsorption and oxidation of phenolic acids in soil suspension. Soil Sci. Plant Nutr., 42: 867–879.

    CAS  Google Scholar 

  • Mason-Sedun W., Jessop R.S. (1988). Differential phytotoxicity among species and cultivars of the genusBrassica to wheat. II. Activity and persistence of water-soluble phytotoxins from residues of the genusBrassica. Plant Soil, 107: 69–80.

    Article  Google Scholar 

  • Molísch H. (1937). Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer, Jena (In German).

    Google Scholar 

  • Morimoto M., Komai K. (2005). Plant growth inhibitors: Patchoulane-type sesquiterpenes fromCyperus rotundus L. Weed Biol. Manag., 5: 203–209.

    Article  CAS  Google Scholar 

  • Nakahisa K., Tsuzuki E., Terao H., Koseinura S. (1994). Study on the allelopathy of alfalfa (Medicago sativa L.). 2. Isolation and identification of allelopathic substance in alfalfa. Japanese 9. Crop Sci., 63: 278–284.

    CAS  Google Scholar 

  • Niemeyer H.M. (1988). Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry, 27: 3349–3358.

    Article  CAS  Google Scholar 

  • Ohno T., First P.R. (1998). Assessment of the Folin and Ciocalteu’s method for determining soil phenolic carbon. J. Environ. Qual., 27: 776–782.

    Article  CAS  Google Scholar 

  • Ohno T., Doolan K., Zibilske L.M., Liebman M., Gallandt E.R., Berube C. (2000). Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agri. Ecosyst. Environ., 78: 187–192.

    Article  Google Scholar 

  • Okumura M., Filonow A.B., Waller G.R. (1999). Use of14C-labeled alfalfa saponins for monitoring their fate in soil. J. Chem. Ecol., 25: 2575–2583.

    Article  CAS  Google Scholar 

  • Osbourn A.E. (1999). Antimicrobial phytoprotectants and fungal pathogens: a commentary. Fungal Genet. Biol., 26: 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Patrick Z.A., Toussoun T.A., Snyder W.C. (1963). Phytotoxic substances in arable soils associated with decomposition of plant residues. Phytopathology, 53: 152–161.

    Google Scholar 

  • Pramanik M.H.R., Nagal M., Asao M., Matsui Y. (2000). Effect of temperature amd photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol., 26: 1953–1967.

    Article  CAS  Google Scholar 

  • Qasem J.R., Foy C.L. (2001). Weed allelopathy, its ecological impacts and future prospects: a review. J. Crop Prod., 4: 43–92.

    Article  CAS  Google Scholar 

  • Rasmussen J.A., Einhellig F.A. (1977). Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J. Chem. Ecol., 3: 197–205.

    Article  CAS  Google Scholar 

  • Ren H., Song T., Wu T.Q., Sun L., Liu Y.X., Yang F., Chen Z.Y., Dong H. (2006). Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-III effector. Ann. Microbiol. 56 (4): 281–287.

    Article  CAS  Google Scholar 

  • Rice E.L. (1984). Allelopathy, 2nd edn., Academic Press, N.Y., USA.

    Google Scholar 

  • Sampietro D.A., Vattuone M.A. (2006). Nature of the interference mechanism of sugarcane (Saccharum officinarum L.) straw. Plant Soil, 280: 157–169.

    Article  CAS  Google Scholar 

  • Schmidt S.K., Ley R.E. (1999). Microbial competition and soil structure limit the expression of allelochemicals in nature. In: Inderjit, Dakshini K.M.M., Foy C.L., Eds, Principles and Practices in Plant Ecology: Allelochemical Interactions, CRC Press, Boca Raton, FL, pp. 339–351.

    Google Scholar 

  • Shaukat S.S., Siddiqui I.A., Khan G.H., Zaki M.J. (2002). Nematicidal and allelopathic potential ofArgemone mexicana, a tropical weed. Plant Soil, 245: 239–247.

    Article  Google Scholar 

  • Shaw L.J., Morris P., Hooker J.E. (2006). Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol., 8 (11): 1867–1880.

    Article  CAS  PubMed  Google Scholar 

  • Shindo H., Kuwatsuka S. (1975a). Behavior of phenolic substances in the decaying process of plants: II. Changes of phenolic substances in the decaying process of rice straw under various conditions. Soil Sci. Plant Nutr., 21: 215–225.

    CAS  Google Scholar 

  • Shindo H., Kuwatsuka S. (1975b). Behavior of phenolic substances in the decaying process of plants: III. Degradation pathway of phenolic acids. Soil Sci. Plant Nutr., 21: 227–238.

    CAS  Google Scholar 

  • Tang C.S., Waiss A.C. (1978). Short-chain fatty acids as growth inhibitors in decomposing wheat straw. J. Chem. Ecol., 4: 225–232.

    Article  CAS  Google Scholar 

  • Testa B. (1995). The Metabolism of Drugs and other Xenobiotics: Biochemistry of Redox Reactions, Academic Press, New York.

    Google Scholar 

  • Tsuzuki E. (2001). Application of buckwheat as a weed control. Agri. Hort., 76: 55–62 (in Japanese).

    Google Scholar 

  • Understrup A.G., Ravnskov S., Hansen H.C.B., Fomsgaard I.S. (2005). Biotransformation of 2-benzoxazolinone to 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-phenoxazin-3-one in soil. J. Chem. Ecol., 31 (5): 1205–1222.

    Article  CAS  PubMed  Google Scholar 

  • Van Etten H.D., Sandrock R.W., Wasmann C.C., Soby S.D., McCluskey K., Wang P. (1995). Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can. J. Bot., 73: 518–525.

    Article  Google Scholar 

  • Vilich V., Löhndorf B., Sikora R.A., Friebe A. (1999). Metabolism of benzoxazolinone allelochemicals ofZea mays byFusarium subglutinans. Mycol. Res., 103: 1529–1532.

    Article  CAS  Google Scholar 

  • Virtanen A.I., Hietala P.K. (1960). Precursors of benzoxazolinone in rye plants. Acta Chem. Scand., 14: 499–504.

    Article  Google Scholar 

  • Weidenhamer J.D., Romeo J.T. (2004). Allelochemicals ofPolygonella myriophylla: Chemistry and soil degradation. J. Chem. Ecol., 30 (5): 1067–1082.

    Article  CAS  PubMed  Google Scholar 

  • Weir T.L., Park S.W., Vivanco J.M. (2004). Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol., 7: 472–479.

    Article  CAS  PubMed  Google Scholar 

  • Weston L.A., Nimbal C.H., Jeandet P. (1999). Allelopathic potential of grain sorghum (Sorghum bicolor (L.) Moench) and related species. In: Inderjit, Dakshini K.M.M., Foy C.L., Eds, Principles and Practices in Plant Ecology: Allelochemical Interactions, CRC Press, Boca Raton, FL, pp. 467–477.

    Google Scholar 

  • Williamson G.B., Weidenhamer J.D. (1990). Bacterial degradation of juglone: Evidence against allelopathy. J. Chem. Ecol., 16 (5): 1739–1742.

    Article  CAS  Google Scholar 

  • Xuan T.D., Tsuzuki E. (2002). Varietal difference in allelopathic potential of alfalfa (Medicago sativa L.). J. Agro. Crop Sci., 188: 2–7.

    Article  Google Scholar 

  • Xuan T.D., Chikara J., Ogushi Y., Tsuzuki E., Terao H., Khanh T.D., Matsuo M. (2003a). Application of kava (Piper methysticum L.) root as potential herbicide and fungicide. Crop Prot., 22: 873–881.

    Article  Google Scholar 

  • Xuan T.D., Tsuzuki E., Matsuo M., Khanh T.D. (2003b). Correlation between inhibitory exhibition and suspected allelochemicals in alfalfa (Medicago sativa L.). Plant Prod. Sci., 6: 165–171.

    Article  CAS  Google Scholar 

  • Xuan T.D., Tsuzuki E., Terao H., Matsuo M., Khanh T.D. (2003c). Identification of potential allelochemicals in kava (Piper methysticum L.) root. Allelopathy J., 12, 197–204.

    Google Scholar 

  • Xuan T.D., Tawata S., Khanh T.D., Chung I.M. (2005). Decomposition of allelopathic plants in soil. J. Agron. Crop Sci., 191: 162–171.

    Google Scholar 

  • Yue Q., Bacon C.W., Richardson M.D. (1998). Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone byFusarium moniliforme. Phytochemistry, 48: 451–454.

    Article  CAS  Google Scholar 

  • Zikmundová M., Drandarov K., Bigler L., Hesse M., Werner C. (2002a). Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated fromAphelandra tetragona. Appl. Environ. Microbiol., 68 (10): 4863–4870.

    Article  PubMed  CAS  Google Scholar 

  • Zikmundová M., Drandarov K., Hesse M., Werner C. (2002b). Hydroxylated 2-amino- 3H-phenoxazin-3-one derivatives as products of 2-hydroxy-1,4-benzoxazin-3-one (HBOA) biotransformation byChaetosphaeria sp., an endophytic fungus fromAphelandra tetragona. Z. Naturforsch, 57c: 660–665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Jilani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jilani, G., Mahmood, S., Chaudhry, A.N. et al. Allelochemicals: sources, toxicity and microbial transformation in soil —a review. Ann. Microbiol. 58, 351–357 (2008). https://doi.org/10.1007/BF03175528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175528

Key words

Navigation