Skip to main content
Log in

A Comparative Study of the Humic Substances and Organic Matter in Physical Fractions of Haplic Chernozem under Contrasting Land Uses

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The goal of this work is to find out whether the chemical fractions isolated by traditional alkaline extraction are associated with any specific physical fractions. The approach consists in comparison of the specific structural features (assessed according to solid-phase 13C-NMR spectroscopy data) and the contributions of the fractions of both types to total soil organic carbon. The object of the study is Haplic Chernozem of two contrasting land uses: virgin steppe and long-term bare fallow. The investigated chemical fractions are humic acids, humin, and the composite fraction comprising the fulvic acids and organic matter of hydrochloric acid extract, and the colloids precipitated from alkaline extract. The physical fractions obtained according to particle size–density distribution comprise the light fraction occluded in aggregates, clay-sized fraction, and the residue remaining after the separation of light fractions and clay. In the virgin soil, the following fraction pairs have similar structural characteristics of the organic matter and the contributions to soil organic carbon: humic acids–occluded light fraction, composite fraction–clay; humin–residue after physical fractionation. As for the fallow soil, the structural composition of the organic matter is also similar in the above listed pairs but their contributions to the total soil carbon are markedly different. Thus, the chemical fractions in the uncultivated chernozem are associated with particular physical fractions, which is unobservable in degraded bare fallow soil. A comparison of the carbon weight in all fractions of two examined soil variants shows that all fractions lose carbon with soil degradation but the highest loss among the chemical fractions is unexpectedly observed for humin (61%), whereas among versus the physical fractions the highest loss is observed in the occluded light fraction (66%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Z. S. Artemyeva, Organic Matter and Soil Granulometric System (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  2. Z. S. Artem’eva and G. N. Fedotov, “The composition of the functional pools of labile organic matter in the zonal range of automorphic soils of the central Russian Plain,” Moscow Univ. Soil Sci. Bull. 68 (4), 147–153 (2013).

    Article  Google Scholar 

  3. Z. S. Artem’eva and N. P. Kirillova, “The role of products of organo-mineral interaction in structure formation and humus formation of the main types of soils in the Center of the Russian Plain,” Byull. Pochv. Inst. im. V. V. Dokuchaeva, No. 90, 73–95 (2017).

    Google Scholar 

  4. Z. S. Artemyeva, N. N. Danchenko, E. P. Zazovskaya, Yu. G. Kolyagin, N. P. Kirillova, and B. M. Kogut, “Natural 13C abundance and chemical structure of organic matter of haplic chernozem under contrasting land uses,” Eurasian Soil Sci. 54 (6), 852–864 (2021).

    Article  Google Scholar 

  5. A. G. Zavarzina, E. G. Kravchenko, A. I. Konstantinov, I. V. Perminova, S. N. Chukov, and V. V. Demin, “Comparison of the properties of humic acids extracted from soils by alkali in the presence and absence of oxygen,” Eurasian Soil Sci. 52 (8), 880–891 (2019). https://doi.org/10.1134/S1064229319080167

    Article  Google Scholar 

  6. B. M. Kogut, Abstract of Candidate’s Dissertation in Agriculture (Dokuchaev Soil Science Institute, Moscow, 1982).

  7. B. M. Kogut, “Principles and methods for assessing the content of transformed organic matter in arable soils,” Pochvovedenie, No. 3, 308–316 (2003).

    Google Scholar 

  8. B. M. Kogut, S. A. Sysuev, and V. A. Kholodov, “Water stability and labile humic substances of typical chernozems under different land uses,” Eurasian Soil Sci. 45 (5), 496–502 (2012).

    Article  Google Scholar 

  9. B. M. Kogut, Z. S. Artemyeva, N. P. Kirillova, M. A. Yashin, and E. I. Soshnikova, “Organic matter of the air-dry and water-stable macroaggregates (2–1 mm) of haplic chernozem in contrasting variants of land use,” Eurasian Soil Sci. 52 (2), 141–149 (2019). https://doi.org/10.1134/S106422931902008X

    Article  Google Scholar 

  10. M. M. Kononova, Soil Organic Matter (Izd. Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  11. D. S. Orlov, Soil Humic Acids and the General Theory of Humification (Mosk. Iniv., Moscow, 1990) [in Russian].

    Google Scholar 

  12. D. S. Orlov, Soil Chemistry (Mosk. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  13. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Soil Organic Matter of the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  14. V. A. Kholodov, A. I. Konstantinov, E. Yu. Belyaeva, N. A. Kulikova, A. V. Kiryushin, and I. V. Perminova, “Structure of humic acids isolated by sequential alkaline extraction from a typical chernozem,” Eurasian Soil Sci. 42 (10), 1095–1100 (2009).

    Article  Google Scholar 

  15. S. N. Chukov, E. D. Lodygin, and E. V. Abakumov, “Application of 13C NMR spectroscopy to the study of soil organic matter: a review of publications,” Eurasian Soil Sci. 51 (8), 889–900 (2018). https://doi.org/10.1134/S1064229318080021

    Article  Google Scholar 

  16. Z. S. Artemyeva Z.S. and B. M. Kogut, “The effect of tillage on organic carbon stabilization in microaggregates in different climatic zones of European Russia,” Agriculture 6, art. 63 (2016). https://doi.org/10.3390/agriculture6040063

    Article  Google Scholar 

  17. P. Barré, T. Eglin, B. T. Christensen, P. Ciais, S. Houot, T. Kätterer, F. van Oort, et al., “Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments,” Biogeosciences 7, 3839–3850 (2010). https://doi.org/10.5194/bg-7-3839-2010

    Article  Google Scholar 

  18. M. Boeni, C. Bayer, J. Dieckow, P. C. Conceição, D. P. Dick, H. Knicker, and M. C. M. Macedo, “Organic matter composition in density fractions of Cerrado Ferrasols as revealed by CPMAS 13C NMR: influence of pastureland, cropland and integrated crop-livestock,” Agric., Ecosyst. Environ. 190, 80–86 (2014). https://doi.org/10.1016/j.agee.2013.09.024

    Article  Google Scholar 

  19. M. Breulman, N. P. Masyutenko, B. M. Kogut, R. Schroll, U. Dorfler, F. Buscot, and E. Schulz, “Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems,” Sci. Total Environ. 497–498, 29–37 (2014).

    Article  Google Scholar 

  20. C. A. Campbell, E. A. Pau, D. A. Rennie, and R. J. McCallum, “Applicability of the carbon dating method of analysis to soil humus studies,” Soil Sci. 104, 217–224 (1967).

    Article  Google Scholar 

  21. C. Chenu and A. F. Plante, “Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the “organo-mineral complex”,” Eur. J. Soil Sci. 57, 596–607 (2006). https://doi.org/10.1111/j.1365-2389.2006.00834.x

    Article  Google Scholar 

  22. S. E. Crow, C. W. Swanston, K. Lajtha, J. R. Brooks, and H. Keirstead, “Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context,” Biogeochemistry 85, 69–90 (2007). https://doi.org/10.1007/s10533-007-9100-8

    Article  Google Scholar 

  23. N. N. Danchenko, Z. S. Artemyeva, Y. G. Kolyagin, and B. M. Kogut, “Features of the chemical structure of different organic matter pools in Haplic Chernozem of the Streletskaya steppe: 13C MAS NMR study,” Environ. Res. 191, art. 110205 (2020). https://doi.org/10.1016/j.envres.2020.110205

    Article  Google Scholar 

  24. K. Eusterhues, C. Rumpel, M. Kleber, and I. Kögel-Knabner, “Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation,” Org. Geochem. 34, 1591–1600 (2003).

    Article  Google Scholar 

  25. K. Eusterhues, C. Rumpel, and I. Kögel-Knabner, “Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol,” Org. Geochem. 38, 1356–1372 (2007).

    Article  Google Scholar 

  26. A. Golchin, J. M. Oades, J. O. Skjemstad, and P. Clarke, “Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy,” Austr. J. Soil Res. 32, 285–309 (1994).

    Article  Google Scholar 

  27. A. Golchin, J. M. Oades, J. O. Skjemstad, and P. Clarke, “Soil structure and carbon cycling,” Austr. J. Soil Res. 32, 1043–1068 (1994b).

    Article  Google Scholar 

  28. M. H. B. Hayes, “Solvent systems for the isolation of organic components from soils,” Soil Sci. Soc. Am. J. 70, 986–994 (2006).

    Article  Google Scholar 

  29. T. M. Hayes, M. H. B. Hayes, J. O. Skjemstad, and R. S. Swift, “Compositional relationships between organic matter in a grassland soil and its drainage waters,” Eur. J. Soil Sci. 59, 603–616 (2008). https://doi.org/10.1111/j.1365-2389.2007.01007.x

    Article  Google Scholar 

  30. M. H. B. Hayes, R. Mylotte, and R. S. Swift, “Humin: its composition and importance in soil organic matter,” Adv. Agron. 143, 47–138 (2017). https://doi.org/10.1016/bs.agron.2017.01.001

    Article  Google Scholar 

  31. M. H. B. Hayes and R. S. Swift, “Vindication of humic substances as a key component of organic matter in soil and water,” Adv. Agrono. 163, Ch. 1 (2020). https://doi.org/10.1016/bs.agron.2020.05.001

  32. R. Kiem, H. Knicker, M. Körschens, and I. Kögel-Knabner, “Refractory organic carbon in C-depleted arable soils, as studied by 13C NMR spectroscopy and carbohydrate analysis,” Org. Geochem. 31, 655–668 (2000).

    Article  Google Scholar 

  33. R. Kiem and I. Kögel-Knabner, “Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 mm,” Org. Geochem. 33, 1699–1713 (2002).

    Article  Google Scholar 

  34. I. Kögel-Knabner, W. Zech, and P. G. Hatcher, “Chemical composition of the organic matter in forest soils: the humus layer,” // Z. Pflanzenernähr. Bodenk. 151, 331–340 (1988).

    Article  Google Scholar 

  35. P. M. Kopittke, R. C. Dalal, C. Hoeschen, C. Lia, N. W. Menziesa, and C. W. Mueller, “Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio,” Geoderma 357, art. 113974 (2020). https://doi.org/10.1016/j.geoderma.2019.113974

    Article  Google Scholar 

  36. J. Lehmann, D. Solomon, J. Kinyangi, L. Dathe, S. Wirick, and C. Jacobsen, “Spatial complexity of soil organic matter forms at nanometre scales,” Nat. Geosci. 1, 238–242 (2008). https://doi.org/10.1038/ngeo155

    Article  Google Scholar 

  37. J. Lehmann and M. Kleber, “The contentious nature of soil organic matter,” Nature 528, 60–68 (2015).

    Article  Google Scholar 

  38. E. Lehndorff, A. Rodionov, L. Plümer, P. Rottmann, B. Spiering, S. Dultz, and W. Amelung, “Spatial organization of soil microaggregates,” Geoderma 386, art. 114915 (2021). https://doi.org/10.1016/j.geoderma.2020.114915

    Article  Google Scholar 

  39. L. Lopez-Sangil and P. Rovira, “Sequential chemical extractions of the mineral-associated soil organic matter: an integrated approach for the fractionation of organo-mineral complexes,” Soil Biol. Biochem. 62, 57–67 (2013).

    Article  Google Scholar 

  40. M. von Lützow, I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review,” Eur. J. Soil Sci. 57, 426–445 (2006).

    Article  Google Scholar 

  41. J.-D. Mao, X. Cao, D. C. Olk, W. Chu, and K. Schmidt-Rohr, “Advanced solid-state NMR spectroscopy of natural organic matter,” Prog. Nucl. Magn. Reson. Spectrosc. 100, 17–51 (2017). https://doi.org/10.1016/j.pnmrs.2016.11.003

    Article  Google Scholar 

  42. C. Moni, C. Rumpel, I. Virto, A. Chabbi, and C. Chenu, “Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils,” Eur. J. Soil Sci. 61, 958–969 (2010). https://doi.org/10.1111/j.1365-2389.2010.01307.x

    Article  Google Scholar 

  43. A. Nebbioso, G. Vinci, M. Drosos, R. Spaccini, and A. Piccolo, “Unveiling the molecular composition of the unextractable soil organic fraction (humin) by humeomics,” Biol. Fertil. Soils 51, 443–451 (2015). https://doi.org/10.1007/s00374-014-0991-y

    Article  Google Scholar 

  44. P. N. Nelson, J. A. Baldock, P. Clarke, J. M. Oades, and G. J. Churchman, “Dispersed clay and organic matter in soil: their nature and associations,” Aust. J. Soil Res. 37, 289–315 (1999). https://doi.org/10.1071/S98076

    Article  Google Scholar 

  45. E. A. Paul, “The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization,” Soil Biol. Biochem. 98, 109–126 (2016).

    Article  Google Scholar 

  46. C. Plaza, B. Giannetta, I. Benavente, C. Vischetti, and C. Zaccone, “Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing,” Sci. Rep. 9, art. 10146 (2019). https://doi.org/10.1038/s41598-019-46577-y

    Article  Google Scholar 

  47. C. Poeplau, A. Dona, J. Six, M. Kaiser, D. Benbie, C. Chenu, M. F. Cotrufo, et al., “Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—A comprehensive method comparison,” Soil Biol. Biochem. 125, 10–26 (2018).

    Article  Google Scholar 

  48. J. Prietzel, S. Müller, I. Kögel-Knabner, J. Thieme, C. Jaye, and D. Fischer, “Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy,” Sci. Total Environ. 628–629, 906–918 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.121

    Article  Google Scholar 

  49. C. Rumpel, V. Chaplot, A. Chabbi, C. Largeaua, and C. Valentin, “Stabilization of HF soluble and HCl resistant organic matter in sloping tropical soils under slash and burn agriculture,” Geoderma 145, 347–354 (2008). https://doi.org/10.1016/j.geoderma.2008.04.001

    Article  Google Scholar 

  50. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore, “Persistence of soil organic matter as an ecosystem property,” Nature 478, 49–56 (2011). https://doi.org/10.1038/nature10386

    Article  Google Scholar 

  51. I. Schöning, H. Knicker, and I. Kögel-Knabner, “Intimate association between O/N-alkyl carbon and iron oxides in clay fractions of forest soils,” Org. Geochem. 36, 1378–1390 (2005).

    Article  Google Scholar 

  52. M. S. Shaymukhametov, N. A. Titova, L. S. Travnikova, and Y. M. Labenets, “Use of physical fractionation methods to characterize soil organic matter,” Sov. Soil Sci. 16, 117–128 (1984).

    Google Scholar 

  53. P. Sollins, C. Swanston, M. Kleber, T. Filley, M. Kramer, S. Crow, B. A. Caldwell, K. Lajtha, and R. Bowden, “Organic C and N stabilization in a forest soil: evidence from sequential density fractionation,” Soil Biol. Biochem 38, 3313–3324 (2006). https://doi.org/10.1016/j.soilbio.2006.04.014

    Article  Google Scholar 

  54. G. Song, M. H. B. Hayes, E. H. Novotny, and A. J. Simpson, “Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid,” Naturwissenschaften 98, 7–13 (2011). https://doi.org/10.1007/s00114-010-0733-4

    Article  Google Scholar 

  55. F. J. Stevenson, Humus Chemistry; Genesis, Composition, Reactions (Wiley & Sons, New York, 1994).

    Google Scholar 

  56. R. Swift, “Organic matter characterization,” in Methods of Soil Analysis. Part 3: Chemical Methods, ed. by D. L. Sparks et al. (SSSA Book Series 5, Madison, WI, 1996), pp. 1011–1069. https://doi.org/10.2136/sssabookser5.3.c35

  57. K. U. Totsche, W. Amelung, M. H. Gerzabek, G. Guggenberger, E. Klumpp, C. Knief, E. Lehndorff, et al., “Microaggregates in soils,” J. Plant Nutr. Soil Sci. 181, 104–136 (2018). https://doi.org/10.1002/jpln.201600451

    Article  Google Scholar 

  58. N. A. Vasilyeva, S. Abiven, E. Y. Milanovskiy, M. Hilf, O. V. Rizhkov, and M. W. I. Schmidt, “Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a Chernozem,” Soil Biol. Biochem. 43, 1985–1988 (2011). https://doi.org/10.1016/j.soilbio.2011.05.015

    Article  Google Scholar 

  59. World Reference Base for Soil Resources 2014. A Framework for International Classification, Correlation and Communication, Word Soil Resource Report 106 (FAO. Rome, 2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Danchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danchenko, N.N., Artemyeva, Z.S., Kolyagin, Y.G. et al. A Comparative Study of the Humic Substances and Organic Matter in Physical Fractions of Haplic Chernozem under Contrasting Land Uses. Eurasian Soil Sc. 55, 1371–1383 (2022). https://doi.org/10.1134/S1064229322100039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322100039

Keywords:

Navigation