Skip to main content
Log in

Long-Term Fertilizer Use Altered Soil Microbial Community Structure but Not α-Diversity in Subtropical Southwestern China

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Despite the general consensus that fertilizer is the most important driver of the evolution of soil microbial communities, the specific effects of long-term fertilizer use on microbial communities remain unclear. Here, we collected soil samples from fertilized (NPK) and unfertilized (NF) plots in a subtropical farmland in southwestern China. NPK plots were consistently treated with chemical fertilizer (nitrogen, phosphorous, and potassium) for the 20 years; NF plots were left unfertilized for the same period. To explore the effects of long-term fertilizer use on soil microbial community structure, microbial community composition in the topsoil was assessed using the bacterial 16S rRNA gene and the full-length fungal ITS1 gene. In conjunction, we measured various soil chemical properties. We found that metrics associated with soil fertility (i.e., total nitrogen, total phosphorus, total potassium, available nitrogen, available phosphorus, and available potassium) were significantly greater in the NPK samples as compared to the NF samples, but that soil pH was significantly lower. We also found that long-term fertilizer use reshaped soil microbial community composition but did not alter community α-diversity. Notably, the bacterial phyla Nitrospirae and Planctomycetes and the fungal phylum Ascomycota were closely associated with the NPK plot, influenced by soil organic matter, total nitrogen, available potassium, and available phosphorus, while the bacterial phyla Bacteroidetes and Chloroflexi and the fungal phyla Glomeromycota and Basidiomycota were closely associated with the NF plot, influenced by soil pH. Our results provide long-term data clarifying the microbial regulation mechanisms underlying the response of farmland soil to long-term fertilizer use in subtropical China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. F. Acton and L. J. Gregorich, Health of Our Soils: Toward Sustainable Agriculture in Canada (Minister of Supply and Services Canada, Ottawa, 1995).

  2. R. S. Ali, E. Kandeler, S. Marhan, M. S. Demyan, J. Ingwersen, R. Mirzaeitalarposhti, F. Rasche, G. Cadisch, and C. Poll, “Controls on microbially regulated soil organic carbon decomposition at the regional scale,” Soil Biol. Biochem. 118, 59–68 (2018). https://doi.org/10.1016/j.soilbio.2017.12.007

    Article  Google Scholar 

  3. A. Belay, A. Claassens, and F. Wehner, “Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation,” Biol. Fertil. Soil 35 (6), 420–427 (2002). https://doi.org/10.1007/s00374-002-0489-x

    Article  Google Scholar 

  4. R. Bobbink, K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, et al., “Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis,” Ecol. Appl. 20, 30–59 (2010). https://doi.org/10.1890/08-1140.1

    Article  Google Scholar 

  5. C. M. Clark, E. E. Cleland, S. L. Collins, J. E. Fargione, L. Gough, K. L. Gross, et al., “Environmental and plant community determinants of species loss following nitrogen enrichment,” Ecol. Lett. 10, 596–607 (2007). https://doi.org/10.1111/j.1461-0248.2007.01053.x

    Article  Google Scholar 

  6. V. Chaudhry, A. Rehman, A. Mishra, P. S. Chauhan, and C. S. Nautiyal, “Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments,” Microb. Ecol. 64 (2), 450–460 (2012). https://doi.org/10.1007/s00248-012-0025-y

    Article  Google Scholar 

  7. Y. L. Chen, Y. Cao, and S. Liu, “Effects of long-term mineral fertilizer application on soil nutrients, yield, and fungal community composition,” Eurasian Soil Sci. 54, 597–604 (2021). https://doi.org/10.1134/S1064229321040049

    Article  Google Scholar 

  8. X. B. Dai, H. M. Wang, and X. L. Fu, “Soil microbial community composition and its role in carbon mineralization in long-term fertilization paddy soils,” Sci. Total Environ. 580 (15), 556–563 (2015). https://doi.org/10.1016/j.scitotenv.2016.11.212

    Article  Google Scholar 

  9. W. Dan, Q. Yang, J. Z. Zhang, S. Wang, X. L. Chen, X. L. Zhang, and W. Q. Li, “Bacterial community structure and diversity in a black soil as affected by long-term fertilization,” Pedosphere 18 (5), 582–592 (2018).https://doi.org/10.1016/S1002-0160(08)60052-1

    Article  Google Scholar 

  10. G. Dantas and M. A. Sommer, “How to fight back against antibiotic resistance,” Am. Sci. 102 (1), 42–51 (2014). https://doi.org/10.1511/2014.106.42

    Article  Google Scholar 

  11. J. W. Doran, M. Sarrantonio, and M. A. Liebig, “Soil health and sustainability,” Adv. Agron. 56 (8), 1–54 (1996). https://doi.org/10.1016/S0065-2113(08)60178-9

    Article  Google Scholar 

  12. P. G. Falkowski, T. Fenchel, and E. F. Delong, “The microbial engines that drive Earth’s biogeochemical cycles,” Science 20 (5879), 1034–1039 (2008). https://doi.org/10.1126/science.1153213

    Article  Google Scholar 

  13. R. K. Gangwar, M. Makádi, I. Demeter, A. Táncsics, M. Cserháti, G. Várbíró, J. Singh, Á. Csorba, M. Fuchs, E. Michéli, and T. Szegi, “Soil chemical and biological properties of salt affected soils under different land use practices in Hungary and India,” Eurasian Soil Sci. 54, 1007–1018 (2021). https://doi.org/10.1134/S1064229321070048

    Article  Google Scholar 

  14. C. Hong, Y. Si, Y. Xing, and Y. Li, “Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas,” Environ. Sci. Pollut. Res 22 (14), 10788–10799 (2015). https://doi.org/10.1007/s11356-015-4186-3

    Article  Google Scholar 

  15. A. L. Koch, “Oligotrophs versus copiotrophs,” BioEssays 23 (7), 657–661 (2001). https://doi.org/10.1002/bies.1091

    Article  Google Scholar 

  16. Y. Liang, L. Wu, I. M. Clark, K. Xue, Y. F. Yang, and J. D. van Nostrand, “Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity,” mBio 6 (2), 15–22 (2015). https://doi.org/10.1128/mBio.00240-15

    Article  Google Scholar 

  17. J. W. Leff, S. E. Jones, S. M. Prober, A. Barberán, E. T. Borer, J. L. Firn, et al., “Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe,” Proc. Natl. Acad. Sci. U.S.A. 112 (35), 10967–10972 (2015). https://doi.org/10.1073/pnas.1508382112

    Article  Google Scholar 

  18. H. Liu, W. Xiong, R. Zhang, X. N. Hang, D. S. Wang, and R. Li, “Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora,” Plant Soil 423 (2), 229–240 (2018). https://doi.org/10.1007/s11104-017-3504-6

    Article  Google Scholar 

  19. L. L. Liu, X. Q. Huang, J. B. Zhang, Z. C. Cai, K. Jiang, and Y. Y. Chang, “Deciphering the combined effect and relative importance of soil and plant traits on the development of rhizosphere microbial communities,” Soil Biol. Biochem. 148, 107909 (2020). https://doi.org/10.1016/j.soilbio.2020.107909

    Article  Google Scholar 

  20. W. Liu, L. Jiang, S Yang, Z. Wang, R. Tian, Z. Y. Peng, et al., “Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment,” Ecology 101 (8), e03053 (2020). https://doi.org/10.1002/ecy.3053

    Article  Google Scholar 

  21. Q. Ma, Y. Wen, D. Wang, X. Sun, P. W. Hill, A. Macdonald, et al., “Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition,” Soil Biol. Biochem. 144, 107760 (2020). https://doi.org/10.1016/j.soilbio.2020.107760

    Article  Google Scholar 

  22. J. B. Martiny, B. J. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, and J. L. Green, “Microbial biogeography: putting microorganisms on the map,” Nat. Rev. Microbiol. 4 (2), 102–112 (2006). https://doi.org/10.1038/nrmicro1341

    Article  Google Scholar 

  23. P. C. Nel, R. O. Barnard, R. E. Steynberg, J. M. De Beer, and H. T. Groeneveld, “Trends in maize grain yields in a long-term fertilizer trial,” Field Crops Res. 47 (1), 53–64 (1996). https://doi.org/10.1016/0378-4290(96)00006-8

    Article  Google Scholar 

  24. A. Orgiazzi, E. Lumini, R. H. R. Nilsson, H. Nilsson, M. Girlanda, A. Vizzini, P. Bonfante, and V. Bianciotto, “Unravelling soil fungal communities from different Mediterranean land-use backgrounds,” PLoS One 7 (4), e34847 (2012). https://doi.org/10.1371/journal.pone.0034847

    Article  Google Scholar 

  25. C. J. Stevens, P. Manning, L. J. L. van den Berg, M. C. C. de Graaf, G. W. W. Wamelink, A. W. Boxman, et al., “Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats,” Environ. Pollut. 159, 665–676 (2011). https://doi.org/10.1016/j.envpol.2010.12.008

    Article  Google Scholar 

  26. P. O. Sorensen, A. C. Finzi, M. A. Giasson, A. B. Reimann, R. S. Demott, and P. H. Templer, “Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming,” Soil Biol. Biochem. 116, 39–47 (2018). https://doi.org/10.1016/j.soilbio.2017.09.026

    Article  Google Scholar 

  27. K. N. Suding, S. L. Collins, L. Gough, C. Clark, E. E. Cleland, K. L. Gross, et al., “Functional- and abundance-based mechanisms explain diversity loss due to N fertilization,” Proc. Natl. Acad. Sci. U.S.A. 102, 4387–4392 (2005). https://doi.org/10.1073/pnas.0408648102

    Article  Google Scholar 

  28. J. F. Toljander, C. Juan, T. A. Santos-González, A. Tehler, and R. D. Finlay, “Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial,” FEMS Microbiol. Ecol. 65 (2), 323–338 (2010). https://doi.org/10.1111/j.1574-6941.2008.00512.x

    Article  Google Scholar 

  29. J. C, Wang, G. Rhodes, Q. W. Huang, and Q. R. Shen, “Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system,” Biol. Fertil. Soils 54, 731–742 (2018). https://doi.org/10.1007/s00374-018-1295-4

    Article  Google Scholar 

  30. J. J. Wang, Y. Zhang, B. X. Wang, X. D. Yang, and J. Shen, “Patterns of elevational beta diversity in micro- and macroorganisms,” Global Ecol. Biogeogr. 21 (7), 743–750 (2012). https://doi.org/10.1111/j.1466-8238.2011.00718.x

    Article  Google Scholar 

  31. C. Xiong, Y. G. Zhu, J. T. Wang, S. Brajesh, L.L. Han, and L. L. Shen, “Host selection shapes crop microbiome assembly and network complexity,” New Phytol. 229, 1091–1104 (2020). https://doi.org/10.1111/nph.16890

    Article  Google Scholar 

  32. Y. M. Xiong, L. Ruan, Z. Q. Li, S. P. Dai, Y. J. Pan, Y. Qiao, Y. Q. Qi and L. Hu, “Changes in metabolic functions of the soil microbial community in Eucalyptus plantations along an urban-rural gradient,” Eurasian Soil Sci. 54, 1912–1920 (2021). https://doi.org/10.1134/S1064229321120152

    Article  Google Scholar 

  33. W. B. Xun, J. Zhao, C. Xue, G. S. Zhang, W. Ran, B. Wang, et al., “Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China,” Environ. Microbiol. 18 (6), 1907–1917 (2016). https://doi.org/10.1111/1462-2920.13098

    Article  Google Scholar 

  34. Y. Yu, M. Wu, E. Petropoulos, J. Zhang, J. Nie, Y. Liao, Z. Li, X. Lin, and Y. Feng, “Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China,” Sci. Total Environ. 656, 625–633 (2019) https://doi.org/10.1016/j.scitotenv.2018.11.359

    Article  Google Scholar 

  35. Y. H. Yun, B. M. Wang, X. Xiang, J. Zhou, X. Qiu, Y. Duan, and A. S. Engel, “The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification,” Front. Microbiol. 116, 39–47 (2016). https://doi.org/10.3389/fmicb.2016.01955

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the staff of the Jingdong Soil and Fertilizer Station in Yunnan Province. This study was funded by the Key Research and Development Program of Yunnan (2018BB015), the Basic Application Research Project of Yunnan Province (2019YD096), and Technology Research and Development Program of ZunYi (HZ[2021]324).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. X. Wu or B. Z. Wu.

Ethics declarations

The authors state no conflict of interest with respect to the research, authorship, and/or publication of this article.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G.R., Fan, Z.W., An, T.X. et al. Long-Term Fertilizer Use Altered Soil Microbial Community Structure but Not α-Diversity in Subtropical Southwestern China. Eurasian Soil Sc. 55, 1116–1125 (2022). https://doi.org/10.1134/S1064229322080178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322080178

Keywords:

Navigation