Skip to main content
Log in

Nitrification in Eutrophic Peat Soils under Different Land-Use Management Practices

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

We have analyzed the distribution of soil properties and the intensity of net nitrification in the profiles of eutrophic peatlands on the Yakhroma River floodplain (Moscow region, Russia) under 4 land-use types: a near-pristine birch forest, postagrogenic reforestation, and regular plowing for more than 50 and 100 years. The type of land use exerts a significant impact on the content of organic carbon, total nitrogen, the C/N ratio, as well as on the content of nitrates and the net nitrification rate only in the upper peat layers (0–20 and 20–40 cm). The effect of the land-use type on the processes of nitrogen cycle in soil is caused by changes in the quantity, quality, and regularity of the input of fresh plant debris. It has been revealed that nitrification is the main process of microbiological transformation of nitrogen compounds in euthrophic peatlands, irrespectively of the type of their use; plowed peatlands being characterized by a lower nitrification rate as compared to peatlands under forests. The intensity of autotrophic nitrification is higher than the heterotrophic one in the forest peatland and is similar to it in agrogenic and postagrogenic peatlands. The first stage of autotrophic nitrification is mainly performed by ammonium-oxidizing archaea, while the number of copies of the amoA gene of ammonium-oxidizing bacteria is by 1–2 orders of magnitude lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. N. Kurganova, V. M. Telesnina, V. O. Lopes de Gerenyu, V. I. Lichko, and E. I. Karavanova, “The dynamics of carbon pools and biological activity of retic albic podzols in southern taiga during the postagrogenic evolution,” Eurasian Soil Sci. 54, 337–351 (2021). https://doi.org/10.1134/S1064229321030108

    Article  Google Scholar 

  2. M. I. Makarov, E. Yu. Kuznetsova, T. I. Malysheva, M. N. Maslov, and O. V. Menyailo, “Effect of the storage conditions of soil samples on carbon and nitrogen extractability,” Eurasian Soil Sci. 50, 549–558 (2017). https://doi.org/10.1134/S1064229317030085

    Article  Google Scholar 

  3. M. I. Makarov, T. I. Malysheva, M. N. Maslov, E. Yu. Kuznetsova, O. V. Menyailo, “Determination of carbon and nitrogen in microbial biomass of southern-taiga soils by different methods,” Eurasian Soil Sci. 49, 685–695 (2016). https://doi.org/10.1134/S1064229316060053

    Article  Google Scholar 

  4. M. N. Maslov and M. I. Makarov, “Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia,” Eurasian Soil Sci. 49, 757–764 (2016). https://doi.org/10.1134/S1064229316070073

    Article  Google Scholar 

  5. M. N. Maslov, O. A. Maslova, and O. A. Tokareva, “Changes in labile and microbial pools of carbon and nitrogen in forest litter samples under different methods of storage,” Eurasian Soil Sci. 52 (7), 747–755 (2019). https://doi.org/10.1134/S106422931907010X

    Article  Google Scholar 

  6. I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga,” Eurasian Soil Sci. 47, 1207–1215 (2014). https://doi.org/10.1134/S1064229314090117

    Article  Google Scholar 

  7. V. M. Telesnina, L. G. Bogatyrev, A. I. Benediktova, F. I. Zemskov, M. N. Maslov, “The dynamics of plant debris input and a some properties of forest litters during postagrogenic reforestation under the conditions of southern taiga”, Moscow Univ. Soil Sci. Bull. 74 (4), 139–145 (2019).

    Article  Google Scholar 

  8. M. M. Umarov, A. V. Kurakov, and A. L. Stepanov, Microbiological Transformation of Nitrogen in Soil (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  9. G. Badagliacca, E. Benitez, G. Amato, L. Badalucco, D. Giambalvo, V. A. Laudicina, P. Ruisi, “Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and Faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions,” Sci. Total Environ. 639, 350–359 (2018).

    Article  Google Scholar 

  10. R. Bartossek, G. W. Nicol, A. Lanzen, H.-P. Klenk, C. Schleper, “Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context,” Environ. Microbiol 12, 1075–1088 (2010).

    Article  Google Scholar 

  11. S. J. Bechtold and R. J. Naiman, “Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna,” Soil Biol. Biochem. 38, 1318–1325 (2006).

    Google Scholar 

  12. A. Bedard-Haughn, A. L. Matson, and D. J. Pennock, “Land use effects on gross nitrogen mineralization, nitrification, and n2o emissions in ephemeral wetlands,” Soil Biol. Biochem. 38 (12), 3398–3406 (2006).

    Article  Google Scholar 

  13. E. Bent, D. Nemeth, C. Wagner-Riddle, and K. Dunfield, “Residue management leading to higher field-scale n2o flux is associated with different soil bacterial nitrifier and denitrifier gene community structures,” Appl. Soil. Ecol. 108, 288–299 (2016).

    Article  Google Scholar 

  14. D. J. Booth, C. E. Prescott, and S. J. Grayston, “Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems,” Soil Biol. Biochem. 75, 11–25 (2014).

    Article  Google Scholar 

  15. S. D. Bridgham, K. Updegraff, and J. Pastor, “Carbon, nitrogen, and phosphorus mineralization in northern wetlands,” Ecology 79, 1545–1561 (1998).

    Article  Google Scholar 

  16. P. C. Brookes, A. Landman, G. Pruden, and D. S. Jenkinson, “Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil,” Soil Biol. Biochem. 17, 837–842 (1985).

    Article  Google Scholar 

  17. T. R. Cavagnaro, L. E. Jackson, K. Hristova, and K. M. Scow, “Short-term population dynamics of ammonia oxidizing bacteria in an agricultural soil,” Appl. Soil. Ecol. 40, 13–18 (2008).

    Article  Google Scholar 

  18. J. A. Ceja-Navarro, F. N. Rivera-Orduna, L. Patino-Zuniga, A. Vila-Sanjurjo, J. Crossa, B. Govaerts, L. Dendooven, “Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities,” Appl. Environ. Microbiol. 76, 3685–3691 (2010).

    Article  Google Scholar 

  19. X. P. Chen, Y. G. Zhu, Y. Xia, J. P. Shen, J. Z. He, “ammonia-oxidizing archaea: important players in paddy rhizosphere soil?,” Environ. Microbiol 10, 1978–1987 (2008).

    Article  Google Scholar 

  20. Z. Chen, W. Ding, Y. Xu, RuttingT. Muller, H. Yu, J. Fan, J. Zhang, T. Zhu, “Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidence from a 15N tracing study to literature synthesis,” Soil Biol. Biochem. 91, 65–75 (2015).

    Article  Google Scholar 

  21. M. J. Colloff, S. A. Wakelin, D. Gomez, and S. L. Rogers, “Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management,” Soil Biol. Biochem. 40, 1637–1645 (2008).

    Article  Google Scholar 

  22. W. R. Cookson, M. Osman, P. Marschner, D. A. Abaye, I. Clark, D. V. Murphy, E. A. Stockdale, C. A. Watson, “Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature,” Soil Biol. Biochem. 39, 744–756 (2007).

    Article  Google Scholar 

  23. W. De Boer and G. Kowalchuk, “nitrification in acid soils: micro-organisms and mechanisms,” Soil Biol. Biochem. 33, 853–866 (2001).

    Article  Google Scholar 

  24. N. Fierer and J. P. Schimel, “Effects of drying-rewetting frequency on soil carbon and nitrogen transformations,” Soil Biol. Biochem. 34, 777–787 (2002).

    Article  Google Scholar 

  25. L. B. Guo and R. M. Gifford, “Soil carbon stocks and land use change: a meta-analysis,” Glob. Change Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  26. S. Hallin, C. M. Jones, M. Schloter, and L. Philippot, “relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment,” Isme J. Nature Publ. Group 3, 597–605 (2009).

    Google Scholar 

  27. H. L. Hayden, J. Drake, M. Imhof, A. P. A. Oxley, S. Norng, P. M. Mele, “The abundance of nitrogen cycle genes AmoA, and NifH, depends on land-uses and soil types in south-eastern Australia,” Soil Biol. Biochem. 42, 1774–1783 (2010).

    Article  Google Scholar 

  28. D. Helen, H. Kim, B. Tytgat, and W. Anne, “Highly diverse NirK genes comprise two major clades that harbour ammonium-producing denitrifiers,” BMC Genomics 17, 155 (2016).

    Article  Google Scholar 

  29. S. L. Henderson, C. E. Dandie, C. L. Patten, B. J. Zebarth, D. L. Burton, J. T. Trevors, C. Goyer, “Changes in denitrifier abundance, denitrification gene MRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues,” Appl. Environ. Microbiol. 76, 2155–2164 (2010).

    Article  Google Scholar 

  30. L. Huang, C. W. Riggins, S. Rodriguez-Zas, M. C. Zabaloy, M. B. Villamil, “Long-term N fertilization imbalances potential n acquisition and transformations by soil microbes,” Sci. Total Environ. 691, 562–571 (2019).

    Article  Google Scholar 

  31. A. Islam, D. Chen, and R. E. White, “heterotrophic and autotrophic nitrification in two acid pasture soils,” Soil Biol. Biochem. 39, 972–975 (2007).

    Article  Google Scholar 

  32. K. Kalbitz, H. Rupp, and R. Meissner, “N-, P- and DOC-dynamics in soil and groundwater after restoration of intensively cultivated fens,” in Wetlands in Central Europe (Springer, 2002), pp. 99–116.

    Google Scholar 

  33. O. Kalinina, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia,” Catena 129, 18–29 (2015).

    Article  Google Scholar 

  34. X. Ke, W. Lu, and R. Conrad, “High oxygen concentration increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil,” Microb. Ecol. 70, 961–970 (2015).

    Article  Google Scholar 

  35. J. G. Kim, M. Y. Jung, S. J. Park, W. I. C. Rijpstra, J. S. S. Damste, E. L. Madsen, D. Min, J. S. Kim, G. J. Kim, S. K. Rhee, “Cultivation of a highly enriched ammonia-oxidizing archaeon of Thaumarchaeotal group I.1b from an agricultural soil,” Environ. Microbiol 14, 1528–1543 (2012).

    Article  Google Scholar 

  36. N. Kim, C. W. Riggins, S. Rodriguez-Zas, M. C. Zabaloy, M. B. Villamil, “Long-Term residue removal under tillage decreases AmoA-nitrifiers and stimulates NirS-denitrifier groups in the soil,” Appl. Soil. Ecol. 157, 103730 (2021).

    Article  Google Scholar 

  37. L. E. Lehtovirta-Morley, “Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together,” FEMS Microbiol. Letts. 365 (2018).

  38. S. Leininger, T. Urich, M. Schloter, L. Schwark, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster, C. Schleper, “Archaea predominate among ammoniaoxidizing prokaryotes in Soils,” Nature 442, 806–809 (2006).

    Article  Google Scholar 

  39. P. Li and M. Lang, “Gross nitrogen transformations and related N2O emissions in uncultivated and cultivated black soil,” Biol. Fertil. Soils 50 (2), 197–206 (2014).

    Article  Google Scholar 

  40. D. D. Li, X. Y. Zhang, S. M. Green, J. A. J. Dungait, X. F. Wen, Y. Q. Tang, Z. M. Guo, Y. Yang, X. M. Sun, T. A. Quine, “Nitrogen functional gene activity in soil profiles under progressive vegetative recovery after abandonment of agriculture at the Puding karst critical zone observatory, SW China,” soil biol. biochem. 125, 93–102 (2018).

  41. Y. Lin, H. -W. Hu, G. Ye, J. Fan, W. Ding, Z. -Y. He, Y. Zheng, J. -Z. He, “Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: a meta-analysis,” Geoderma 404, 115395 (2021).

    Article  Google Scholar 

  42. A. Long, B. Song, K. Fridey, and A. Silva, “Detection and diversity of copper containing nitrite reductase genes (NirK) in Prokaryotic and fungal communities of agricultural soils,” Cubitermes–Severus, FEMS Microbiol. Ecol. 91, 1–9 (2015).

    Article  Google Scholar 

  43. M. N. Maslov and O. A. Maslova, “Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices,” Catena 210, 105922 (2022).

    Article  Google Scholar 

  44. M. N. Maslov and O. A. Maslova, “Temperate peatlands use-management effects on seasonal patterns of soil microbial activity and nitrogen availability. Catena 190, 104548 (2020).

    Article  Google Scholar 

  45. C. Müller, R. J. Stevens, and R. J. Laughlin, “A 15N tracing model to analyze N transformations in old grassland soil,” Soil Biol. Biochem. 36, 619–632 (2004).

    Article  Google Scholar 

  46. D. D. Németh, C. Wagner-Riddle, and K. E. Dunfield, “Abundance and gene expression in nitrifier and denitrifier communities associated with a field scale spring thaw N2O flux event,” Soil Biol. Biochem. 73, 1–9 (2014).

    Article  Google Scholar 

  47. G. W. Nicol, S. Leininger, C. Schleper, and J. I. Prosser, “the influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria,” Environ. Microbiol 10, 2966–2978 (2008).

    Article  Google Scholar 

  48. H. de Venterink, T. E. Davidsson, K. Kiehl, and L. Leonardson, “Impact of drying and rewetting on N, P and K dynamics in a wetland soil,” Plant Soil 243, 119–130 (2002).

    Article  Google Scholar 

  49. Y. Ouyang, S. E. Evans, M. L. Friesen, and L. K. Tiemann, “Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies,” Soil Biol. Biochem. 127, 71–78 (2018).

    Article  Google Scholar 

  50. N. Picone, A. Pol, R. Mesman, M. A. van Kessel, G. Cremers, A. H. van Gelder, T. A. van Alen, M. S. M. Jetten, S. Lücker, H. J. O. Camp, “Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium,” ISME J. 15, 1150–1164 (2021).

    Article  Google Scholar 

  51. J. I. Prosser, L. Hink, C. Gubry-Rangin, and G. W. Nicol, “Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies,” Glob. Change Biol. 26, 103–118 (2020).

    Article  Google Scholar 

  52. L. M. Segal, D. N. Miller, R. P. McGhee, T. D. Loecke, K. L. Cook, C. A. Shapiro, R. A. Drijber, “Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site,” Soil Tillage Res 168, 110–117 (2017).

    Article  Google Scholar 

  53. V. Shah, B. X. Chang, and R. M. Morris, “Cultivation of a chemoautotroph from the clade of marine bacteria that produces nitrite and consumes ammonium,” ISME J. 11, 263–271 (2017).

    Article  Google Scholar 

  54. A. Sims, J. Horton, S. Gajaraj, S. McIntosh, R. J. Miles, R. Mueller, R. Reed, Z. Hu, “Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands,” Water Res. 46, 4121–4129 (2012).

    Article  Google Scholar 

  55. Y. Song, C. Song, H. Meng, C. M. Swarzenski, X. Wang, W. Tan, “Nitrogen additions affect litter quality and soil biochemical properties in a peatland of northeast China,” Ecol. Eng. 100, 175–185 (2017).

    Article  Google Scholar 

  56. Z. Song, J. Wang, G. Liu, and C. Zhang, “Changes in nitrogen functional genes in soil profiles of grassland under long-term grazing prohibition in a semiarid area,” Sci. Total Environ. 673, 92–101 (2019).

    Article  Google Scholar 

  57. C. Ste-Marie, “Pare´ D. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands,” Soil Biol. Biochem. 31, 1579–1589 (1999).

    Article  Google Scholar 

  58. B. Tiemeyer, J. Frings, P. Kahle, S. Kohne, B. Lennartz, “A comprehensive study of nutrient losses, soil properties and groundwater concentrations in a degraded peatland used as an intensive meadow - implications for rewetting,” J. Hydrology 345, 80–101 (2007).

    Article  Google Scholar 

  59. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  60. D. T. Verhamme, J. I. Prosser, and G. W. Nicol, “Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms,” ISME J. 5, 1067–1071 (2011).

    Article  Google Scholar 

  61. B. Wang, G. B. Liu, S. Xue, and B. Zhu, “Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau,” Environ. Earth Sci. 62, 915–925 (2011).

    Article  Google Scholar 

  62. C. Wang, S. Tang, X. He, and G. Ji, “The abundance and community structure of active ammonia-oxidizing archaea and ammonia-oxidizing bacteria shape their activities and contributions in coastal wetlands,” Water Res. 171, 115464 (2020).

    Article  Google Scholar 

  63. C. J. Westbrook, K. J. Devito, and C. J. Allan, “Soil N cycling in harvested and pristine boreal forests and peatlands,” Forest Ecol. Manage 234, 227–237 (2006).

    Article  Google Scholar 

  64. Z. Xie, X. L. Roux, C. P. Wang, and Z. K. Gu, “An M., Nan H.Y., Chen B.Z., Li F., Liu Y.J., Du G.Z., Feng H.Y., Ma X.J. "Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows,” Soil Biol. Biochem. 77, 89–99 (2014).

    Article  Google Scholar 

  65. S. Yu and J. G. Ehrenfeld, “The effects of changes in soil moisture on nitrogen cycling in acid wetland types of the New Jersey Pinelands (USA),” Soil Biol. Biochem. 41, 2394–2405 (2009).

    Article  Google Scholar 

  66. J. Zhang, W. Sun, W. Zhong, and Z. Cai, “The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils,” Soil Biol. Biochem. 76, 143–148 (2014).

    Article  Google Scholar 

  67. J. B. Zhang, J. Wang, W. H. Zhong, and Z. C. Cai, “Organic nitrogen stimulates the heterotrophic nitrification rate in an acidic forest soil,” Soil Biol. Biochem. 80, 293–295 (2015).

    Article  Google Scholar 

  68. Y. Zhang, J. Wang, S. Dai, J. Zhao, X. Huang, Y. Sun, J. Chen, Z. Cai, J. Zhang, “The effect of C : N ratio on heterotrophic nitrification in acidic soils,” Soil Biol. Biochem. 107562 (2019).

Download references

ACKNOWLEDGMENT

The authors are grateful to Senior research scientist of the Dokuchaev Soil Science Institute (Moscow), Cand. Sci. (Biol.) A.K. Tkhakakova for the performance of the quantitative polymerase chain reaction.

Funding

The experimental part of the work was supported by the Russian Science Foundation, project no. 20-74-00023. The data obtained were generalized within the framework of state assignment of the Ministry of Science and Education of the Russian Federation (theme no. 121040800321-4. Indicators of Transformation of Biogeochemical Cycles of Biogenic Elements in Natural and Anthropogenic Ecosystems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Maslov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, M.N., Pozdnyakov, L.A. & Maslova, O.A. Nitrification in Eutrophic Peat Soils under Different Land-Use Management Practices. Eurasian Soil Sc. 55, 1095–1105 (2022). https://doi.org/10.1134/S1064229322080105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322080105

Keywords:

Navigation