Skip to main content
Log in

High Oxygen Concentration Increases the Abundance and Activity of Bacterial Rather than Archaeal Nitrifiers in Rice Field Soil

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Oxygen is considered as a limiting factor for nitrification in rice paddy soil. However, little is known about how the nitrifying microbial community responds to different oxygen concentrations at community and transcript level. In this study, soil and roots were harvested from 50-day-old rice microcosms and were incubated for up to 45 days under two oxygen concentrations: 2 % O2 and 20 % O2 (ambient air). Nitrification rates were measured from the accumulation of nitrite plus nitrate. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was determined from the abundance (using quantitative PCR (qPCR)) and composition (using terminal restriction fragment length polymorphism and cloning/sequencing) of their amoA genes, that of nitrite oxidizers (NOB) by quantifying the nxrA gene of Nitrobacter spp. and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by quantifying the copy numbers of amoA and nxrA transcripts (using RT-qPCR). Different oxygen concentrations did not affect the community compositions of AOB, AOA, and NOB, which however were different between surface soil, bottom soil, and rice roots. However, nitrification rates were higher under ambient air than 2 % O2, and abundance and transcript activities of AOB, but not of AOA, were also higher. Abundance and transcript copy numbers of Nitrobacter were also higher at ambient air. These results indicate that AOB and NOB, but not AOA, were sensitive to oxygen availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsumoto S, Katoku M, Saeki G, Terada A, Aoi Y, Tsuneda S et al (2010) Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environ Microbiol 12:192–206

    Article  CAS  PubMed  Google Scholar 

  2. Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574

    Article  CAS  PubMed  Google Scholar 

  3. Lehtovirta-Morley LE, Stoeckerb K, Vilcinskasb A, Prossera JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108:15892–15897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci USA 108:4170–4175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Stewart FJ, Ulloa O, DeLong EF (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol 14:23–40

    Article  CAS  PubMed  Google Scholar 

  6. Jones RD, Hood MA (1980) Effect of temperature, pH, salinity and inorganic nitrogen on the rate of ammonium oxidation by nitrifiers isolated from wetland environments. Microb Ecol 6:339–347

    Article  CAS  PubMed  Google Scholar 

  7. Princic AI, Mahne F, Megusar F, Eldo AP, Tiedje JM (1998) Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl Environ Microbiol 64:3584–3590

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Suwa Y, Imamura Y, Suzuki T, Tashiro T, Urushigawa Y (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Res 28:1523–1532

    Article  CAS  Google Scholar 

  9. Koops HP, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  10. Bollmann A, Laanbroek HJ (2002) Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol Ecol 37:211–221

    Article  Google Scholar 

  11. Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7:382–395

    Article  CAS  PubMed  Google Scholar 

  12. Revsbech NP, Pedersen O, Reichardt W, Briones A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils 29:379–385

    Article  Google Scholar 

  13. Ke X, Angel R, Lu Y, Conrad R (2013) Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol 15:2275–2292

    Article  CAS  PubMed  Google Scholar 

  14. Kowalchuk GA, Bodelier PLE, Heilig G, Hans J, Stephen JR, Laanbroek HJ (1998) Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiol Ecol 27:339–350

    Article  CAS  Google Scholar 

  15. Gleeson DB, Muller C, Banerjee S, Ma W, Siciliano SD, Murphy DV (2010) Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol Biochem 42:1888–1891

    Article  CAS  Google Scholar 

  16. Abell GCJ, Revill AT, Smith C, Bissett AP, Volkman JK, Robert SS (2010) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME J 4:286–300

    Article  CAS  PubMed  Google Scholar 

  17. Pereira e Silva MC, Poly F, Guillaumaud N, van Elsas JD, Salles JF (2012) Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH. Front Microbiol 3:77

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Pett-Ridge J, Petersen DG, Nuccio E, Firestone MK (2013) Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil. FEMS Microbiol Ecol 85:179–194

    Article  PubMed  Google Scholar 

  19. Ke X, Lu Y (2012) Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol Ecol 80:87–97

    Article  CAS  PubMed  Google Scholar 

  20. Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  PubMed  Google Scholar 

  21. Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF et al (2010) Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol 12:315–326

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Ke X, Wu L, Lu Y (2009) Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol 32:27–36

    Article  CAS  PubMed  Google Scholar 

  23. Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, 500pp

    Google Scholar 

  24. Stenstrom MK, Poduska RA (1980) The effect of dissolved oxygen concentration on nitrification. Water Res 14:643–649

    Article  CAS  Google Scholar 

  25. Caffrey JM, Sloth NP, Kaspar H, Blackburn TH (1993) Effect of organic loading on nitrification and denitrification in a marine sediment microcosm. FEMS Microbiol Ecol 12:159–167

    Article  CAS  Google Scholar 

  26. Abell GCJ, Banks J, Ross DJ, Keane JP, Robert SS, Revill AT, Volkman JK (2011) Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. FEMS Microbiol Ecol 75:111–122

    Article  CAS  PubMed  Google Scholar 

  27. Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB (2012) Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol 14:714–729

    Article  CAS  PubMed  Google Scholar 

  28. French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmann A (2012) Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol 78:5773–5780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mosier A, Lund M, Francis C (2012) Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 64:955–963

    Article  CAS  PubMed  Google Scholar 

  30. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364

    Article  CAS  PubMed  Google Scholar 

  31. Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  CAS  PubMed  Google Scholar 

  32. Kögel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kolbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  33. Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13

    Article  CAS  PubMed  Google Scholar 

  34. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A 105:2134–2139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–981

    Article  CAS  PubMed  Google Scholar 

  36. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida S (1981) Fundamentals of rice crop science. Laguna International Rice Research Institute, Los Banos, 269p

    Google Scholar 

  38. Robinson KG, Dionisi HM, Harms G, Layton AC, Gregory IR, Sayler GS (2003) Molecular assessment of ammonia- and nitrite-oxidizing bacteria in full-scale activated sludge wastewater treatment plants. Water Sci Technol 48:119–126

    CAS  PubMed  Google Scholar 

  39. Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z, Jia Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the LOEWE Research Center “Synmicro,” the National High Technology Research and Development Program of China (863 program; grant no: 2012AA02A703), and the National Natural Science Foundation of China (grant no: 31400439) for financial support. We thank two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Conrad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, X., Lu, W. & Conrad, R. High Oxygen Concentration Increases the Abundance and Activity of Bacterial Rather than Archaeal Nitrifiers in Rice Field Soil. Microb Ecol 70, 961–970 (2015). https://doi.org/10.1007/s00248-015-0633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0633-4

Keywords

Navigation