Skip to main content
Log in

Disentangling Effects of Moisture/gas Regimes on Microbial Community, Network Configuration and Nitrogen Turnover of Black Soil

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Diverse microbes in arable black soil participate in the biogeochemical cycling of nitrogen, which profoundly impact on the fertility and greenhouse gas (GHG) emission. However, the effects of environmental factors on the structure and functions of microbial communities have not been thoroughly elucidated. We performed the indoor microcosm study to collect the soil samples under six moisture (constant and wetting)/gas (air, 10% acetylene, oxygen and argon) regimes and investigated the alterations of bacterial community composition, nitrification/denitrification gene abundance and nitrogen metabolic functions under different conditions by high-throughput sequencing, quantitative PCR, physicochemical analyses and bioinformatics. It was found that the N2O/CO2 emission under six moisture/gas regimes were significantly different (p < 0.001), the processing time also dramatically influenced the GHG emission, and there were considerable interactions between moisture/gas regime and processing time. The impact of moisture/gas regimes, processing time and interaction item on \({\text{NH}}_{4}^{ + }\)-N and \({\text{NO}}_{3}^{ - }\)-N was also conspicuous. The moisture/gas regime significantly affected the community diversity rather than community richness. The key responsive bacterial classes under different gas conditions were Gammaproteobacteria, Bacteroidia and Alphaproteobacteria, in contrast to Actinobacteria, Alphaproteobacteria and Thermoleophilia under different moisture regimes. The abundance of Piscinibacter, Chujaibacter, Symbiobacteraceae and Acidobacteriales species was positively correlated with moisture and N2O emission, and denitrification, nitrate reduction to ammonium, nitrification, nitrogen mineralization/fixation were the dominant processes of nitrogen cycle in black soil, which were supported by co-occurring network analyses and Spearman correlation heatmap. The hub nodes and connection mode of microbial nitrogen-cycling network differ under six moisture/gas regimes, and the same species could be active in multiple major nitrogen turnover processes simultaneously. These findings shed light on the prevention and control of soil fertility decline and global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Hidalgo-García, M. J. Torres, A. Salas, E. J. Bedmar, L. Girard, and M. J. Delgado, “Rhizobium etli produces nitrous oxide by coupling the assimilatory and denitrification pathways,” Front. Microbiol. 10, 980 (2019). https://doi.org/10.3389/fmicb.2019.00980

    Article  Google Scholar 

  2. A. Pandey, H. Suter, J. Z. He, H. W. Hu, and D. Chen, “Nitrogen addition decreases dissimilatory nitrate reduction to ammonium in rice paddies,” Appl. Environ. Microbiol. 84 (17), e00870-18 (2018). https://doi.org/10.1128/AEM.00870-18

    Article  Google Scholar 

  3. B. F. Sun, H. Zhao, Y. Z. Lv, F. Lu, and X. K. Wang, “The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands,” J. Integr. Agric. 15 (2), 440–450 (2016). https://doi.org/10.1186/s40168-020-00857-2

  4. B. Ma, Y. Wang, S. Ye, S. Liu, E. Stirling, J. A. Gilbert, K. Faust, R. Knight, J. K. Jansson, C. Cardona, L. Röttjers, and J. Xu, “Earth microbial co-occurrence network reveals interconnection pattern across microbiomes,” Microbiome 8 (1), 82 (2020).https://doi.org/10.1016/S2095-3119(15)61063-2

  5. C. M. Walecka-Hutchison and J. L. Walworth, “Evaluating the effects of gross nitrogen mineralization, immobilization, and nitrification on nitrogen fertilizer availability in soil experimentally contaminated with diesel,” Biodegradation 18 (2), 133–144 (2007). https://doi.org/10.1007/s10532-006-9049-7

    Article  Google Scholar 

  6. C. Mekala and I. M. Nambi, “Understanding the hydrologic control of N cycle: effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils,” J. Contam. Hydrol. 202, 11–22 (2017). https://doi.org/10.1016/j.jconhyd.2017.04.005

    Article  Google Scholar 

  7. D. C. Hao, S. M. Song, J. Mu, W. L. Hu, and P. G. Xiao, “Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization,” Sci. Rep. 6, 22006 (2016). https://doi.org/10.1038/srep22006

    Article  Google Scholar 

  8. D. Chen, Y. Li, C. Wang, X. Liu, Y. Wang, J. Shen, J. Qin, and J. Wu, “Dynamics and underlying mechanisms of N2O and NO emissions in response to a transient land-use conversion of Masson pine forest to tea field,” Sci. Total Environ. 693, 133549 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.355

    Article  Google Scholar 

  9. D. Wafula, J. R. White, A. Canion, C. Jagoe, A. Pathak, and A. Chauhan, “Impacts of long-term irrigation of domestic treated wastewater on soil biogeochemistry and bacterial community structure,” Appl. Environ. Microbiol. 81 (20), 7143–7158 (2015). https://doi.org/10.1128/AEM.02188-15

    Article  Google Scholar 

  10. D. Zapata, N. Rajan, J. Mowrer, K. Casey, R. Schnell, and F. Hons, “Long-term tillage effect on with-in season variations in soil conditions and respiration from dryland winter wheat and soybean cropping systems,” Sci. Rep. 11 (1), 2344 (2021). https://doi.org/10.1038/s41598-021-80979-1

    Article  Google Scholar 

  11. E. Broman, M. Zilius, A. Samuiloviene, I. Vybernaite-Lubiene, T. Politi, I. Klawonn, M. Voss, F. J. A. Nascimento, and S. Bonaglia, “Active DNRA and denitrification in oxic hypereutrophic waters,” Water Res. 194, 116954 (2021). https://doi.org/10.1016/j.watres.2021.116954

    Article  Google Scholar 

  12. F. A. Webster and D. W. Hopkins, “Contributions from different microbial processes to N2O mission from soil under different moisture regimes,” Biol. Fertil. Soils 22, 331–335 (1996). https://doi.org/10.1007/BF00334578

    Article  Google Scholar 

  13. G. Liang, A.A. Houssou, H. Wu, D. Cai, X. Wu, L. Gao, J. Li, B. Wang, and S. Li, “Seasonal patterns of soil respiration and related soil biochemical properties under nitrogen addition in winter wheat field,” PLoS One 10 (12), e0144115 (2015). https://doi.org/10.1371/journal.pone.0144115

    Article  Google Scholar 

  14. G. M. Zenova, A. A. Gryadunova, E. A. Doroshenko, A. A. Likhacheva, I. I. Sudnitsyn, T. N. Pochatkova, and D. G. Zvyagintsev, “Influence of moisture on the vital activity of actinomycetes in a cultivated low-moor peat soil,” Eurasian Soil Sci. 40, 560–564 (2007). https://doi.org/10.1134/S1064229307050110

    Article  Google Scholar 

  15. G. W. Price, M. G. I. Langille, and S. N. Yurgel, “Microbial co-occurrence network analysis of soils receiving short- and long-term applications of alkaline treated biosolids,” Sci. Total Environ. 751, 141687 (2021). https://doi.org/10.1016/j.scitotenv.2020.141687

    Article  Google Scholar 

  16. H. Heo, M. Kwon, B. Song, and S. Yoon, “Involvement of \({\text{NO}}_{3}^{ - }\) in ecophysiological regulation of dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is implied by physiological characterization of soil DNRA bacteria isolated via a colorimetric screening method,” Appl. Environ. Microbiol. 86 (17), e01054-20 (2020). https://doi.org/10.1128/AEM.01054-2010.1128/AEM.01054-20

    Article  Google Scholar 

  17. H. Pan, Y. Qin, Y. Wang, S. Liu, B. Yu, Y. Song, X. Wang, and G. Zhu, “Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil,” Environ. Res. 186, 109612 (2020). https://doi.org/10.1016/j.envres.2020.109612

    Article  Google Scholar 

  18. J. B. Zhang, C. Muller, and Z. C. Cai, “Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils,” Soil Biol. Biochem. 84, 199–209 (2015). https://doi.org/10.1016/j.soilbio.2015.02.028

    Article  Google Scholar 

  19. J. T. Wollenberg, A. Biswas, and G. L. Chmura, “Greenhouse gas flux with reflooding of a drained salt marsh soil,” PeerJ. 6, e5659 (2018). https://doi.org/10.7717/peerj.5659

    Article  Google Scholar 

  20. K. A. Congreves, T. Phan, and R. Farrell, “A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways,” Soil 5 (2), 265–274 (2019). https://doi.org/10.5194/soil-5-265-2019

    Article  Google Scholar 

  21. K. Zhalnina, P. D. de Quadros, K. A. Gano, A. Davis-Richardson, J. R. Fagen, C. T. Brown, A. Giongo, J. C. Drew, L. A. Sayavedra-Soto, D. J. Arp, F. A. Camargo, S. H. Daroub, I. M. Clark, S. P. McGrath, P. R. Hirsch, et al., “Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments,” Front Microbiol. 4, 104 (2013). https://doi.org/10.3389/fmicb.2013.00104

    Article  Google Scholar 

  22. L. Cao, X. Yu, C. Liu, M. Liu, J. Chen, H. Qin, C. Liang, Q. Xu, and P. Penttinen, “Alteration of soil nitrifiers and denitrifiers and their driving factors during intensive management of Moso bamboo (Phyllostachys pubescens),” Sci. Total Environ. 705, 135236 (2020). https://doi.org/10.1016/j.scitotenv.2019.135236

    Article  Google Scholar 

  23. L. F. Wang and Z. C. Cai, “Nitrous oxide production process at different soil moisture content in an arable soil, China,” Soil Sci. Plant Nutr. 54, 786–793 (2008). https://doi.org/10.1111/j.1747-0765.2008.00297.x

    Article  Google Scholar 

  24. L. F. Wang and Z. C. Cai, “Nitrous oxide and carbon dioxide emissions from upland acidic soils under flooding and moistening pretreatments,” Acta Sci. Circumstantiae 31 (8), 1736–1744 (2011).

    Google Scholar 

  25. L. F. Wang, Z. C. Cai, and H. Yan, “Nitrous oxide emission and reduction in a laboratory-incubated paddy soil response to pretreatment of water regime,” J. Environ. Sci. 16 (3), 353–357 (2004).

    Google Scholar 

  26. L. P. Guo, X. Wang, T. Diao, X. Ju, X. Niu, L. Zheng, X. Zhang, and X. Han, “N2O emission contributions by different pathways and associated microbial community dynamics in a typical calcareous vegetable soil,” Environ. Pollut. 242, 2005–2013 (2018). https://doi.org/10.1016/j.envpol.2018.07.028

    Article  Google Scholar 

  27. L. Yang, G. Zhu, X. Ju, and R. Liu, “How nitrification-related N2O is associated with soil ammonia oxidizers in two contrasting soils in China?” Sci. Total Environ. 770, 143212 (2021). https://doi.org/10.1016/j.scitotenv.2020.143212

    Article  Google Scholar 

  28. L. Y. Stein and M. G. Klotz, “The nitrogen cycle,” Curr. Biol. 26 (3), 94–98 (2016). https://doi.org/10.1016/j.cub.2015.12.021

    Article  Google Scholar 

  29. M. Bouteldja, I. Malek, K. Posta, G. Kampfl, S. Fóti, K. Pintér, Z. Nagy, and J. Balogh, “Temporal variability and drivers of nitrous oxide emissions from central Hungarian croplands: field and lab experiments,” Eurasian Soil Sci. 54, 1183–1195 (2021). https://doi.org/10.1134/S1064229321080032

    Article  Google Scholar 

  30. M. M. M. Kuypers, H. K. Marchant, and B. Kartal, “The microbial nitrogen-cycling network,” Nat. Rev. Microbiol. 16 (5), 263–276 (2018). https://doi.org/10.1038/nrmicro.2018.9

    Article  Google Scholar 

  31. M. Rezaei Rashti, M. Esfandbod, I. R. Phillips, and C. Chen, “Biochar amendment and water stress alter rhizosphere carbon and nitrogen budgets in bauxite-processing residue sand under rehabilitation,” J. Environ. Manage. 230, 446–455 (2019). https://doi.org/10.1016/j.jenvman.2018.09.093

    Article  Google Scholar 

  32. P. Pokharel and S. X. Chang, “Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels,” J. Environ. Manage. 295, 113080 (2021). https://doi.org/10.1016/j.jenvman.2021.113080

    Article  Google Scholar 

  33. Q. Wang, Y. Han, S. Lan, and C. Hu, “Metagenomic insight into patterns and mechanism of nitrogen cycle during biocrust succession,” Front. Microbiol. 12, 633428 (2021). https://doi.org/10.3389/fmicb.2021.633428

    Article  Google Scholar 

  34. R. K. Lu, Chemical Analysis Method of Soil Agriculture (Chinese Agriculture Technology Press, Beijing, 2000).

    Google Scholar 

  35. R. N. van den Heuvel, E. van der Biezen, M. S. Jetten, M. M. Hefting, and B. Kartal, “Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community,” Environ. Microbiol. 12 (12), 3264–3271 (2010). https://doi.org/10.1111/j.1462-2920.2010.02301.x

    Article  Google Scholar 

  36. S. A. Ruiz, D. M. McKay Fletcher, A. Boghi, K. A. Williams, S. J. Duncan, C. P. Scotson, C. Petroselli, T. G. S. Dias, D. R. Chadwick, D. L. Jones, and T. Roose, “Image-based quantification of soil microbial dead zones induced by nitrogen fertilization,” Sci. Total Environ. 727, 138197 (2020). https://doi.org/10.1016/j.scitotenv.2020.138197

    Article  Google Scholar 

  37. S. Banerjee, B. Helgason, L. F. Wang, T. Winsley, B. C. Ferrari, and S. D. Siciliano, “Legacy effects of soil moisture on microbial community structure and N2O emissions,” Soil Biol. Biochem. 95, 40–50 (2016). https://doi.org/10.1016/j.soilbio.2015.12.004

    Article  Google Scholar 

  38. S. Ramzan, T. Rasool, R.A. Bhat, P. Ahmad, I. Ashraf, N. Rashid, M. Ul Shafiq, and I. A. Mir, “Agricultural soils a trigger to nitrous oxide: a persuasive greenhouse gas and its management,” Environ. Monitor. Assess. 192 (7), 436 (2020). https://doi.org/10.1007/s10661-020-08410-2

    Article  Google Scholar 

  39. T. Llorens-Marès, S. Yooseph, J. Goll, J. Hoffman, M. Vila-Costa, C. M. Borrego, C. L. Dupont, and E. O. Casamayor, “Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics,” ISME J. 9 (7), 1648–1661 (2015). https://doi.org/10.1038/ismej.2014.254

    Article  Google Scholar 

  40. T. Y. Li, X. Zhang, H. Gao, B. Li, H. Wang, Q. Yan, M. Ollenburger, and W. Zhang, “Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions,” J. Clean Prod. 241, 118295 (2019). https://doi.org/10.1016/j.jclepro.2019.118295

    Article  Google Scholar 

  41. V. N. Kudeyarov, “Nitrous oxide emission from fertilized soils: an analytical review,” Eurasian Soil Sci. 53, 1396–1407 (2020). https://doi.org/10.1134/S1064229320100105

    Article  Google Scholar 

  42. W. Yang, X. Jing, Y. Guan, C. Zhai, T. Wang, D. Shi, W. Sun, and S. Gu, “Response of fungal communities and co-occurrence network patterns to compost amendment in black soil of Northeast China,” Front. Microbiol. 10, 1562 (2019). https://doi.org/10.3389/fmicb.2019.01562

    Article  Google Scholar 

  43. X. Huang, C. G. Weisener, J. Ni, B. He, D. Xie, and Z. Li, “Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions,” Bioresour. Technol. 312, 123597 (2020). https://doi.org/10.1016/j.biortech.2020.123597

    Article  Google Scholar 

  44. X. Z. Shi, H. W. Hu, X. Zhu-Barker, H. Hayden, J. Wang, H. Suter, D. Chen, and J. Z. He, “Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate,” Environ. Microbiol. 19, 4851–4865 (2017). https://doi.org/10.1111/1462-2920.13872

    Article  Google Scholar 

  45. X. Zhu, M. Burger, T. A. Doane, and W. R. Horwath, “Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability,” Proc. Natl. Acad. Sci. U.S.A. 110, 6328–6333 (2013). https://doi.org/10.1073/pnas.1219993110

    Article  Google Scholar 

  46. Y. J. Cai, W. X. Ding, X. L. Zhang, H. Y. Yu, and L. F. Wang, “Contribution of heterotrophic nitrification to nitrous oxide production in a long-term N-fertilized arable black soil,” Commu. Soil Sci. Plant Anal. 41, 2264–2278 (2010). https://doi.org/10.1080/00103624.2010.507833

    Article  Google Scholar 

  47. Y. Li, H. Wu, Y. Shen, C. Wang, P. Wang, W. Zhang, Y. Gao, and L. Niu, “Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China,” Environ. Pollut. 246, 753–762 (2019). https://doi.org/10.1016/j.envpol.2018.12.087

    Article  Google Scholar 

  48. Y. Shi, X. Zhang, Z. Wang, Z. Xu, C. He, L. Sheng, H. Liu, and Z. Wang, “Shift in nitrogen transformation in peatland soil by nitrogen inputs,” Sci. Total Environ. 764, 142924 (2021). https://doi.org/10.1016/j.scitotenv.2020.142924

    Article  Google Scholar 

  49. Y. Zou, D. Ning, Y. Huang, Y. Liang, H. Wang, L. Duan, T. Yuan, Z. He, Y. Yang, K. Xue, J. D. van Nostrand, and J. Zhou, “Functional structures of soil microbial community relate to contrasting N2O emission patterns from a highly acidified forest,” Sci. Total Environ. 725, 138504 (2020).https://doi.org/10.1016/j.scitotenv.2020.138504

  50. Z. G. Li, L. Li, S. Xia, R. Zhang, R. Zhang, P. Chen, J. Pan, and Y. Liu, “K fertilizer alleviates N2O emissions by regulating the abundance of nitrifying and denitrifying microbial communities in the soil-plant system,” J. Environ. Manage. 291, 112579 (2021). https://doi.org/10.1016/j.jenvman.2021.112579

  51. Z. Li, Z. Zeng, Z. Song, F. Wang, D. Tian, W. Mi, X. Huang, J. Wang, L. Song, Z. Yang, J. Wang, H. Feng, L. Jiang, Y. Chen, Y. Luo, and S. Niu, “Vital roles of soil microbes in driving terrestrial nitrogen immobilization,” Global Change Biol. 27 (9), 1848–1858 (2021). https://doi.org/10.1111/gcb.15552

Download references

Funding

This study is supported by the National Natural Science Foundation of China (nos. 41471205, 41977048), Scientific Research Funds Project of Liaoning Education Department (LR2016067, JDL2019012). We thank editor and review experts for their constructive comments and insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianfeng Wang.

Ethics declarations

The authors declare no competing interests.

Additional information

Contributed equally to this work. Abbreviations: amoA, ammonia monooxygenase; ANOVA, analysis of variance; AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria; CNGB, China National GeneBank; CNSA, CNGB Sequence Archive; DAMO, denitrifying anaerobic methane oxidation; DNRA/ANRA, dissimilatory/assimilatory NRA; GHG, greenhouse gas; LSD, least significant difference; NCD, nitrification-coupled denitrification; ND, nitrifier denitrification; NF, nitrogen fixation; NiD, nitrifier-induced denitrification; N2O, nitrous oxide; nirS, nitrite reductase; nosZ, nitrous oxide reductase; NM, nitrogen mineralization; NMDS, non-metric multidimensional scaling; NRA, nitrate/nitrite reduction to ammonium; OTU, operational taxonomic unit; PCA, principal component analysis; PCoA, principal coordinate analysis; PE, paired end; PERMANOVA, permutational multivariate analysis of variance.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, DC., Wang, L., Gao, W. et al. Disentangling Effects of Moisture/gas Regimes on Microbial Community, Network Configuration and Nitrogen Turnover of Black Soil. Eurasian Soil Sc. 54 (Suppl 1), S42–S61 (2021). https://doi.org/10.1134/S1064229322030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322030073

Keywords

Navigation