Skip to main content
Log in

Effect of climate changes in the holocene on the distribution of humic substances in the profile of forest-tundra peat mounds

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The molecular composition of humic substances in permafrost peatlands of the forest-tundra zone in northeastern European Russia has been characterized for the first time on the basis of systematic studies. Changes in the molar x(H): x(C) ratio along the peat profiles have been revealed, which is due to the activation of cryogenic processes in the upper part of the seasonally thawing layer, the natural selection of condensed humic molecules, and the botanical composition and degree of degradation of peat, which reflect the climatic features of the area in the Holocene. Dry-peat soils of mounds are worse heated during the summer period because of the buffering effect of moss litter, which results in a lower degree of condensation of humic and fulvic acid molecules in the peat horizons down to the permafrost table. Transformation of quantitative and qualitative parameters of specific organic compounds occurs at the permafrost boundary of peatlands, which can serve as an indicator of recent climate changes in high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Aleksandrova, Soil Organic Matter and Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. I. B. Archegova, “Effect of freezing on sorption, composition, and properties of humic substances,” Pochvovedenie, No. 11, 39–49 (1979).

    Google Scholar 

  3. I. B. Archegova, “Effect of freezing on composition of newly formed humus in the experimental conditions,” Izv. Sib. Otd., Akad. Nauk SSSR 15 (3), 20–24 (1983).

    Google Scholar 

  4. Climatic and Hydrological Atlas of Komi Republic (Drofa, Moscow, 1997) [in Russian].

  5. Soil Atlas of the Komi Republic (Komi Resp. Tipogr., Syktyvkar, 2010) [in Russian].

  6. V. K. Bakhnov, Biogeochemical Aspects of Bogging (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  7. Yu. K. Vasil’chuk, A. K. Vasil’chuk, H. Junger, and J. van der Plicht, “Formation of syngenetic ice wedges during the Holocene optimum under conditions of fast accumulation of peat in the Yamal Peninsula,” Kriosfera Zemli 3 (1), 11–12 (1999).

    Google Scholar 

  8. Yu. K. Vasil’chuk, A. K. Vasil’chuk, L. D. Sulerzhitskii, N. A. Budantseva, E. M. Volkova, and Yu. N. Chizhova, “Radiocarbon chronology of frost mounds in the Bol’zhezemel’skaya tundra,” Dokl. Akad. Nauk 393 (1), 101–105 (2003).

    Google Scholar 

  9. O. V. Vishnyakova and G. D. Chimitdorzhieva, “Humic acids in meadow-chernozemic permafrost-affected soils of the Transbaikal region,” Eurasian Soil Sci. 41, 704–707 (2008).

    Article  Google Scholar 

  10. O. Yu. Goncharova, G. V. Matyshak, A. A. Bobrik, N. G. Moskalenko, and O. E. Ponomareva, “Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia,” Eurasian Soil Sci. 48, 1329–1340 (2015). doi 10.1134/S1064229315100038

    Article  Google Scholar 

  11. M. V. Gostishcheva, L. I. Inisheva, and A. I. Shchegolikhina, “Characteristics of organic matter of peat soils of eutrophic mire Tagan (Tomsk oblast),” Vestn. Tomsk. Gos. Pedagog. Univ., No. 3, 114–119 (2010).

    Google Scholar 

  12. M. I. Dergacheva, Archeological Soil Science (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  13. M. I. Dergacheva, O. A. Nekrasova, M. V. Okoneshnikova, D. I. Vasil’eva, D. A. Gavrilov, K. O. Ochur, and E. E. Ondar, “Element ratios in humic acids as a source of information on the environment of soil formation,” Contemp. Probl. Ecol. 5, 497–504 (2012).

    Article  Google Scholar 

  14. T. G. Dobrovol’skaya, A. V. Golovchenko, and D. G. Zvyagintsev, “Analysis of ecological factors limiting the destruction of high-moor peat,” Eurasian Soil Sci. 47, 182–193 (2014). doi 10.1134/S106422931403003X

    Article  Google Scholar 

  15. D. A. Kaverin and A. V. Pastukhov, “Genetic characteristics of barren circles on flat-topped peat mounds in the Bol’shezemel’skaya tundra,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 15 (3), 55–62 (2013).

    Google Scholar 

  16. D. A. Kaverin, A. V. Pastukhov, and G. G. Mazhitova, “Temperature regime of tundra soils and underlying permafrost in the northeast of European Russia,” Kriosfera Zemli 18 (3), 23–32 (2014).

    Google Scholar 

  17. E. V. Kallas, Humus Profiles of Soils in Lake Depressions of the Chulym-Yenisei Lowland (Gumanit. Tekhnol., Novosibirsk, 2004) [in Russian].

    Google Scholar 

  18. E. V. Kallas and M. I. Dergacheva, “Humus profile as a reflection of soil formation staging,” Sib. Ekol. Zh., No. 5, 711–717 (2007).

    Google Scholar 

  19. Map of Quaternary Deposits, North Ural Series Q–41–V, Scale 1: 200 000, Ed. by V. S. Enokyan (Ministry of Geology and Protection of Mineral Resources of Soviet Union, Moscow, 1959) [in Russian].

  20. N. O. Kovaleva and I. V. Kovalev, “Lignin phenols in soils as biomarkers of paleovegetation,” Eurasian Soil Sci. 48, 946–958 (2015). doi 10.1134/S1064229315090057

    Article  Google Scholar 

  21. S. A. Kutenkov, “Software for design of stratigraphic diagrams of Korpi peat composition,” Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, No. 6, 171–176 (2013).

    Google Scholar 

  22. D. V. Levashenko and E. S. Malyasova, “Climatic optimum in the Pechora River delta,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 4, 125–132 (2007).

    Google Scholar 

  23. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci. 47, 400–406 (2014). doi 10.1134/S1064229314010074

    Article  Google Scholar 

  24. E. Yu. Mil’kheev and G. D. Chimitdorzhieva, “Humic acids of soils of the Selenga River in Lake Baikal basin,” Agrokhimiya, No. 7, 45–49 (2008).

    Google Scholar 

  25. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  26. Memory of Soils: Soil as a Memory of Biosphere-Geosphere-Anthroposphere Interactions, Ed. by V. O. Targulian and S. V. Goryachkin (LKI, Moscow, 2008) [in Russian].

  27. Yu. F. Patrakov, E. L. Schastlivtsev, and G. A. Mandrov, “Characterization of brown coal humic and fulvic acids by IR spectroscopy,” Solid Fuel Chem. 44, 293–298 (2010).

    Article  Google Scholar 

  28. N. I. P’yavchenko, Peat Mounds (Academy of Sciences of Soviet Union, Moscow, 1955) [in Russian].

    Google Scholar 

  29. G. V. Rusanova, Polygenesis and Evolution of Soils in the Subarctic Sector by the example of Bol’shezemel’skaya Tundra (Nauka, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  30. M. P. Sartakov and V. D. Tikhova, “Graphostatistical analysis and spectroscopy of 13C-NMR molecules of humic acids of peat in the Middle Ob region,” Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 6, 76–80 (2009).

    Google Scholar 

  31. R. S. Truskavetskii, “Carbon budget of drained peat bogs in Ukrainian Polesie,” Eurasian Soil Sci. 47, 687–693 (2014). doi 10.1134/S1064229314050238

    Article  Google Scholar 

  32. T. E. Fedorova, D. F. Kushnarev, N. V. Vashukevich, A. G. Proidakov, B. Byambagar, and G. A. Kalabin, “13C NMR spectroscopy of humic acids of different origin,” Eurasian Soil Sci. 36, 1080–1084 (2003).

    Google Scholar 

  33. N. A. Khotinskii, “Transcontinental correlation of the history stages of the plants and climate of northern Eurasia in the Holocene,” in Palynology (Nauka, Moscow, 1973), pp. 120–134.

    Google Scholar 

  34. O. A. Chichagova, Radiocarbon Labeling of Soils Humus: Applications in Soil Science and Paleogeography (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  35. S. N. Chukov, E. V. Abakumov, and V. M. Tomashunas, “Characterization of humic acids from antarctic soils by nuclear magnetic resonance,” Eurasian Soil Sci. 48, 1207–1211 (2015). doi 10.1134/S1064229315110046

    Article  Google Scholar 

  36. G. N. Shigabaeva, “Elemental composition and content of functional groups of humic substances in different-origin soils and peats,” Vestn. Tyumen. Gos. Univ., Ekol. Prirodopol’z., No. 12, 45–53 (2014).

    Google Scholar 

  37. N. V. Yudina and V. D. Tikhova, “Specific structure of humic acids of peats extracted by different methods,” Khim. Rastit. Syr’ya, No. 1, 93–96 (2003).

    Google Scholar 

  38. S. Bozkurt, M. Lucisano, L. Moreno, and I. Neretnieks, “Peat as a potential analogue for the long-term evolution in landfills,” Earth Sci. Rev. 53, 95–147 (2001). doi 10.1016/S0012-8252(00)00036-2

    Article  Google Scholar 

  39. T. R. Christensen, S. Jonasson, T. V. Callaghan, and M. Havström, “On the potential CO2 release from tundra soils in a changing climate,” Appl. Soil Ecol. 11, 127–134 (1999). doi 10.1016/S0929-1393(98)00146-2

    Article  Google Scholar 

  40. A. N. Fernandes, M. Giovanela, V. I. Esteves, and M. M. de Souza Sierra, “Elemental and spectral properties of peat and soil samples and their respective humic substances,” J. Mol. Struct. 971, 33–38 (2010).

    Article  Google Scholar 

  41. J. I. Hedges, “Polymerization of humic substances in natural environment,” The Dahlem Workshop on Humic Substances and Their Role in the Environment, Berlin, March 29–April 3, 1987 (Wiley, New York, 1988), p.45.

    Google Scholar 

  42. M. Klavins and O. Purmalis, “Properties and structure of raised bog peat humic acids,” J. Mol. Struct. 1050, 103–113 (2013). doi 10.1016/j.molstruc.2013.07.021

    Article  Google Scholar 

  43. W. M. Post, W. R. Emanuel, P. J. Zinke, and A. J. Stangenberger, “Soil carbon pools and world life zones,” Nature 298, 156–159 (1982).

    Article  Google Scholar 

  44. J. Routh, G. Hugelius, P. Kuhryb, T. Filley, P. K. Tillman, M. Becher, and P. Crill, “Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic,” Chem. Geol. 368, 104–117 (2014). doi 10.1016/j.chemgeo.2013.12.022

    Article  Google Scholar 

  45. S. Schouten, M. Woltering, W. I. C. Rijpstra, A. Sluijs, H. Brinkhuis, and J. S. Sinninghe Damsté, “The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic,” Earth Planet. Sci. Lett. 258, 581–592 (2007). doi 10.1016/j.epsl.2007.04.024

    Article  Google Scholar 

  46. N. I. Shiklomanov, O. A. Anisimov, T. Zhang, S. Marchenko, F. E. Nelson, and C. Oelke, “Comparison of model-produced active layer fields: Results for northern Alaska,” J. Geophys. Res. 112, F02S10 (2007).

    Article  Google Scholar 

  47. M. W. Smith and D. W. Riseborough, “Climate and the limits of permafrost: a zonal analysis,” Permafrost Periglacial Process. 13 (1), 1–15 (2002). doi 10.1007/ s11430-009-0198-5

    Article  Google Scholar 

  48. F. J. Stevenson and K. M. Goh, “Infrared spectra of humic acids and related substances,” Geochim. Cosmochim. Acta 35, 471–483 (1971). doi 10.1016/0016-7037(71)90044-5

    Article  Google Scholar 

  49. R. S. Swift, “Methods of soil analysis,” Soil Sci. Soc. Am. 3, 1018–1020 (1996).

    Google Scholar 

  50. C. Tarnocai, J. Canadell, E. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23, 1–11 (2009).

    Article  Google Scholar 

  51. S. Yamamoto, K. Kawamura, O. Seki, P. A. Meyers, Y. Zheng, and W. Zhou, “Environmental influences over the last 16 ka on compound-specific d13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China,” Chem. Geol. 277, 261–268 (2010). doi 10.1016/j.chemgeo.2010.08.009

    Article  Google Scholar 

  52. C. Zaccone, T. M. Miano, and W. Shotyk, “Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile,” Org. Geochem. 38, 151–160 (2007). D doi 10.1016/j.orggeochem.2006.06.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Vasilevich.

Additional information

Original Russian Text © R.S. Vasilevich, V.A. Beznosikov, 2017, published in Pochvovedenie, 2017, No. 11, pp. 1312–1324.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilevich, R.S., Beznosikov, V.A. Effect of climate changes in the holocene on the distribution of humic substances in the profile of forest-tundra peat mounds. Eurasian Soil Sc. 50, 1271–1282 (2017). https://doi.org/10.1134/S1064229317090101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317090101

Keywords

Navigation