Skip to main content
Log in

Molecular Structure of Humus Substances in Permafrost Peat Mounds in Forest-Tundra

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The molecular structure of humus substances from permafrost-affected peat mounds of the East European forest-tundra has been studied with the use of up to date physicochemical methods (13С NMR, EPR spectroscopy). The structural-functional parameters of humus substances from these soils are specified by the integral action of cryogenic processes in the active layer, natural selection of aromatic structures in the course of humification, and by the species composition and degree of peat decomposition; they reflect the climatic conditions of peat formation in the Holocene. Humic acids of peat bogs are represented by low-condensed molecular structures with the low portion of carbon atoms of aromatic components, which increases down the soil profile, and by with the high content of non-oxidized aliphatic fragments. Active changes in the portions of aromatic and non-oxidized aliphatic fragments take place at the lower boundary of the active layer in the soils of bare peat spots. Such changes may serve as the basis for further search of the bioindicators of recent climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. N. Aleksandrova, Soil Organic Matter and Processes of Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. I. B. Archegova, “Effect of freezing on the sorption, composition, and properties of humic substances,” Pochvovedenie, No. 11, 39–49 (1979).

    Google Scholar 

  3. R. S. Vasilevich and V. A. Beznosikov, “Amino acid composition of humic substances in tundra soils,” Eurasian Soil Sci. 48, 593–599 (2015). https://doi.org/10.1134/S1064229315060125

    Article  Google Scholar 

  4. R. S. Vasilevich and V. A. Beznosikov, “Effect of climate changes in the Holocene on the distribution of humic substances in the profile of forest-tundra peat mounds,” Eurasian Soil Sci. 50, 1271–1282 (2017). https://doi.org/10.1134/S1064229317090101

    Article  Google Scholar 

  5. Yu. K. Vasil’chuk, A. K. Vasil’chuk, H. Junger, and J. van der Plicht, “Formation of syngenetic ice wedges during the Holocene optimum under conditions of fast accumulation of peat in the Yamal Peninsula,” Kriosfera Zemli 3 (1), 11–12 (1999).

    Google Scholar 

  6. J. E. Wertz and J. R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications (McGraw-Hill, New York, 1972; Mir, Moscow, 1975).

  7. Yu. A. Vinogradova, D. A. Kaverin, A. V. Pastukhov, and E. M. Lapteva, “Spatial distribution of microorganisms in peat mounds of the East European sector of Arctic,” in VII Congress of the Dokuchaev Soil Science Society and All-Russia Conference with International Participation “Soil Science to Food and Ecological Security of Russia,” Belgorod, August 15–22, 2016, Abstracts of Papers (Belgorod, Moscow, 2016), Part 2, pp. 105–106.

  8. M. V. Gostishcheva, “Comparison of humic acids from peat soils of Tomsk oblast,” Izv. Tomsk. Politekh. Univ. 310 (2), 163–166 (2007).

    Google Scholar 

  9. M. I. Dergacheva and V. S. Dedkov, “Influence of deep freezing-thawing on the soil organic matter in the forest-tundra of the Ob reaches,” Ekologiya, No. 2, 23–32 (1977).

    Google Scholar 

  10. L. I. Inisheva, N. V. Yudina, I. V. Sokolova, and G. V. Larina, “Characteristics of humic acids of particular peat types,” Khim. Rastit. Syr’ya, No. 4, 179–185 (2013). https://doi.org/10.14258/jcprm.1304179

    Google Scholar 

  11. D. A. Kaverin and A. V. Pastukhov, “Genetic characteristics of barren circles on flat-topped peat mounds in the Bol’shezemel’skaya tundra,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 15 (3), 55–62 (2013).

    Google Scholar 

  12. D. A. Knyazev, A. D. Fokin, and A. V. Ochkin, “Free-radical condensation as a natural mechanism of the formation of humic acids,” Eurasian Soil Sci. 42 984–988 (2009).

    Article  Google Scholar 

  13. N. O. Kovaleva and I. V. Kovalev, “Lignin phenols in soils as biomarkers of paleovegetation,” Eurasian Soil Sci. 48, 946–958 (2015). https://doi.org/10.1134/S1064229315090057

    Article  Google Scholar 

  14. L. S. Kozlovskaya, V. M. Medvedeva, and N. I. P’yavchenko, Dynamics of Organic Matter during Paludification (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  15. G. V. Larina, M. I. Kaizer, and T. V. Vyshnyakova, “Composition of organic matter and humic acids of Balaknak peat field (Mountain Altai),” Vestn. Tomsk. Gos. Pedagog. Univ., No. 8, 222–226 (2013).

  16. D. V. Levashenko and E. S. Malyasova, “Climatic optimum in the Pechora River delta,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 4, 125–132 (2007).

  17. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci. 47, 400–406 (2014). https://doi.org/10.1134/S1064229314010074

    Article  Google Scholar 

  18. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  19. Memory of Soils: Soil as a Memory of Biosphere-Geosphere-Anthroposphere Interactions, Ed. by V. O. Targulian and S. V. Goryachkin (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  20. O. A. Rozentsvet, V. R. Filin, S. V. Saksonov, and V. V. Meshcheryakov, “Seasonal changes in polar lipids in fronds of the ferns Dryopteris filix-mas and Matteuccia struthiopteris,” Biochemistry (Moscow) 67, 1006–1011 (2002).

    Article  Google Scholar 

  21. A. V. Savel’eva and N. V. Yudina, “Change of the chemical composition of swamp vegetation in the course of peat formation,” Khim. Rastit. Syr’ya, No. 3, 17–20 (2003).

    Google Scholar 

  22. A. V. Savel’eva, N. V. Yudina, and L. I. Inisheva, “Composition of humic acids in peats with different degrees of humification,” Solid Fuel Chem. 44, 305–309 (2010).

    Article  Google Scholar 

  23. M. P. Sartakov, “13C NMR spectroscopy of humic acids from peat in the middle reaches of the Ob River,” Khim. Rastit. Syr’ya, No. 3, 135–139 (2008).

    Google Scholar 

  24. M. P. Sartakov and V. D. Tikhova, “Graphostatistical analysis and 13C NMR spectroscopy of humic acid molecules from peat in the middle reaches of the Ob River,” Vestn. Krasn. Gos. Agrar. Univ., No. 6, 76–80 (2009).

  25. S. B. Selyanina, L. N. Parfenova, M. V. Trufanova, K. G. Bogolitsyn, E. V. Mal’tseva, M. V. Bogdanov, and O. N. Yarygina, “Extraction of bitumen from the upper peat layer,” Vestn. Sev. (Arkt.) Fed. Univ., Ser.: Estestv. Nauki, No. 1, 43–50 (2013).

    Google Scholar 

  26. R. S. Truskavetskii, “Carbon budget of drained peat bogs in Ukrainian Polesie,” Eurasian Soil Sci. 47, 687–693 (2014). https://doi.org/10.1134/S1064229314050238

    Article  Google Scholar 

  27. E. V. Fridland, “Analysis of the lipid (soluble in alcohol benzene) fraction of soil humus,” Biol. Nauki, No. 5, 127–133 (1978).

    Google Scholar 

  28. V. A. Kholodov, A. I. Konstantinov, A. V. Kudryavtsev, and I. V. Perminova, “Structure of humic acids in zonal soils from 13C NMR data,” Eurasian Soil Sci. 44, 976–983 (2011).

    Article  Google Scholar 

  29. G. D. Chimitdorzhieva, D. B. Andreeva, O. V. Vishnyakova, and E. Yu. Mil’kheev, Humic Substances in Natural Objects (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2007) [in Russian].

  30. O. A. Chichagova, Radiocarbon Dating of Soil Humus: Application in Soil Science and Paleogeography (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  31. S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter under Anthropogenic Impact (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  32. S. N. Chukov, M. S. Golubkov, and A. G. Ryumin, “Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem,” Eurasian Soil Sci. 43, 1255–1262 (2010).

    Article  Google Scholar 

  33. S. N. Chukov, E. Ejarque, and E. V. Abakumov, “Characterization of humic acids from tundra soils of northern Western Siberia by electron paramagnetic resonance spectroscopy, Eurasian Soil Sci. 50, 30–33 (2017). https://doi.org/10.1134/S1064229317010057

    Article  Google Scholar 

  34. N. V. Shpynova and M. P. Sartakov, “Spectral characteristics of humic acids from organic deposits on the Ob–Irtysh interfluve,” Vestn. Yugorsk. Gos. Univ., No. 4, 88–91 (2010).

  35. F. Ariese, S. Assema, C. Gooijer, A. G. Bruccoleri, and C. H. Langford, “Comparison of Laurentian fulvic acid luminescence with that of the hydroquinone/quinone model system: Evidence from low temperature fluorescence studies and EPR spectroscopy,” Aquat. Sci. 66 (1), 86–94 (2004). https://doi.org/10.1007/s00027-003-0647-8

    Article  Google Scholar 

  36. C. Bayer, L. Martin-Neto, J. Mielniczuk, J. Dieckow, and T. J. C. Amado, “C and N stocks and the role of molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in a subtropical Acrisol managed under no-tillage,” Geoderma 133 (3–4), 258–268 (2006). https://doi.org/10.1016/j.geoderma.2005.07.012

    Article  Google Scholar 

  37. A. F. Cano, A. R. Mermut, R. Ortiz, M. B. Benke, and B. Chatson, “13C CP/MAS-NMR spectra of organic matter as influenced by vegetation, climate, and soil characteristics in soils from Murcia, Spain,” Can. J. Soil Sci. 82 (4), 403–411 (2002).

    Article  Google Scholar 

  38. D. P. Dick, C. N. Goncalves, R. S. D. Dalmolin, H. Knicker, E. Klamt, I. Kogel-Knabner, M. L. Simoes, and L. Martin-Neto, “Characteristics of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth,” Geoderma 12 (3–4), 319–333 (2005). https://doi.org/10.1016/j.geoderma.2004.05.008

    Article  Google Scholar 

  39. R. M. B. O. Duarte, A. M. S. Silva, and A. C. Duarte, “Two-dimensional NMR studies of water-soluble organic matter in atmospheric aerosols,” Environ. Sci. Technol. 42, 8224–8230 (2008). https://doi.org/10.1021/es801298s

    Article  Google Scholar 

  40. P. G. Hatcher, M. Schnitzer, L. W. Dennis, and G. E. Maciel, “Aromaticity of humic substances in soils,” Soil Science Soc. Am. J. 45, 1089–1093 (1981). https://doi.org/10.2136/sssaj1981.03615995004500060016x

    Article  Google Scholar 

  41. A. Jezierski, F. Czechowski, M. Jerzykiewicz, Y. Chen, and J. Drozd, “Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal,” Spectrochim. Acta, Part A 56 (2), 379–385 (2000). https://doi.org/10.1016/S1386-1425(99)00249-8

    Article  Google Scholar 

  42. C. Keeler, E. F. Kelly, and G. E. Maciel, “Chemical-structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA,” Geoderma 130, 124–140 (2006). https://doi.org/10.1016/j.geoderma.2005.01.015

    Article  Google Scholar 

  43. M. Klavins and O. Purmalis, “Properties and structure of raised bog peat humic acids,” J. Mol. Struct. 1050, 103–113 (2013). https://doi.org/10.1016/j.molstruc.2013.07.021

    Article  Google Scholar 

  44. H. Knicker, A. Hilscher, F. J. González-Vila, and G. Almendros, “A new conceptual model for the structural properties of char produced during vegetation fires,” Org. Geochem. 39 (8), 935–939 (2008). https://doi.org/10.1016/j.orggeochem.2008.03.021

    Article  Google Scholar 

  45. M. Kononova, Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility (Pergamon, Oxford, 1966).

    Google Scholar 

  46. E. D. Lodygin and V. A. Beznosikov, “The molecular structure and elemental composition of humic substances from Albeluvisols,” Chem. Ecol. 26 (4), 87–95 (2010). https://doi.org/10.1080/02757540.2010.497759

    Article  Google Scholar 

  47. R. S. T. Manhaes, L. T. Auler, M. S. Sthel, J. Alexandreb, M. S. O. Massunaga, J. G. Carrio, D. R. Santos, E. C. Silva, A. Garcia-Quiroz, and H. Vargas, “Soil characterization using X-ray diffraction, photoacoustic spectroscopy and electron paramagnetic resonance,” Appl. Clay Sci. 21 (5–6), 303–311 (2002). https://doi.org/10.1016/S0169-1317(02)00092-3

    Article  Google Scholar 

  48. J. Mao, X. Cao, D. C. Olk, W. Chu, and K. Schmidt-Rohr, “Advanced solid-state NMR spectroscopy of natural organic matter,” Prog. Nucl. Magn. Reson. Spectrosc. 100, 17–51 (2017). https://doi.org/10.1016/j.pnmrs.2016.11.003

    Article  Google Scholar 

  49. T. P. Roland, T. J. Daley, C. J. Caseldine, D. J. Charman, C. S. M. Turney, M. J. Amesbury, G. J. Thompson, and E. J. Woodley, “The 5.2 ka climate event: Evidence from stable isotope and multi-proxy palaeocological peatland records in Ireland,” Quat. Sci. Rev. 124, 209–223 (2015). https://doi.org/10.1016/j/quascirev.2015.07.026

    Article  Google Scholar 

  50. J. Routh, G. Hugelius, P. Kuhryb, T. Filley, P. K. Tillman, M. Becher, and P. Crill, “Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic,” Chem. Geol. 368, 104–117 (2014). https://doi.org/10.1016/j.chemgeo.2013.12.022

    Article  Google Scholar 

  51. E. A. G. Schuur, J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, V. E. Romanovsky, N. Shiklomanov, et al., “Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle,” BioScience 58 (8), 701–714 (2008). https://doi.org/10.1641/B580807

    Article  Google Scholar 

  52. A. J. Simpson and M. J. Simpson, “Nuclear magnetic resonance analysis of natural organic matter,” in Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, Ed. by N. Senesi, B. Xing, and P. M. Huang (Wiley, New Jersey, 2009), Ch. 15, pp. 589–650.

  53. R. S. Swift, “Organic matter characterization,” in Methods of Soil Analysis, Part 3: Chemical Methods, Soil Science Society of America Book Series no. 5, Ed. by D. L. Sparks, et al. (Soil Science Society of America, Madison, 1996), pp. 1018–1020.

  54. A. M. Tadini, G. Pantano, A. L. Toffoli, B. Fontaine, R. Spaccini, A. Piccolo, A. B. Moreira, and M. C. Bisinoti, “Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses,” Sci. Total Environ. 506–507, 234–240 (2015). https://doi.org/10.1016/j.scitotenv.2014.11.012

    Article  Google Scholar 

  55. M. A. Wilson, “Applications of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter,” J. Soil. Sci. 32, 167–186 (1981). https://doi.org/10.1111/j.1365-2389.1981.tb01698.x

    Article  Google Scholar 

  56. A. Winkler, L. Haumaier, and W. Zech, “Insoluble alkyl carbon components in soils derive mainly from cutin and suberin,” Org. Geochem. 36 (4), 519–529 (2005). https://doi.org/10.1016/j.orggeochem.2004.11.006

    Article  Google Scholar 

  57. C. Zaccone, T. M. Miano, and W. Shotyk, “Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile,” Org. Geochem. 38, 151–160 (2007). https://doi.org/10.1016/j.orggeochem.2006.06.023

    Article  Google Scholar 

  58. W. Zech, R. Hempfling, L. Haumaier, H.-R. Schulten, and K. Haider, “Humification in subalpine Rendzinas: chemical analyses, IR and 13C NMR spectroscopy and pyrolysis-field ionization mass spectrometry,” Geoderma 47 (1–2), 123–138 (1990). https://doi.org/10.1016/0016-7061(90)90050-J

    Article  Google Scholar 

  59. S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Permafrost and the global carbon budget,” Science 312 (5780), 1612–1613 (2006). https://doi.org/10.1126/science.1128908

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as taxpayer-funded research of Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, project no. АААА-А17-117122290011-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Vasilevich.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilevich, R.S., Beznosikov, V.A. & Lodygin, E.D. Molecular Structure of Humus Substances in Permafrost Peat Mounds in Forest-Tundra. Eurasian Soil Sc. 52, 283–295 (2019). https://doi.org/10.1134/S1064229319010150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319010150

Keywords:

Navigation