Skip to main content
Log in

Evolution of Organic Matter in Hummocky Bogs on the Barents Sea Coast in a Changing Climate

  • FACTORS AND SPECIFIC FEATURES OF TRANSFORMATION AND HUMIFICATION OF SOIL ORGANIC MATTER
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The influence of macroparameters (botanical composition, degree of decomposition, and radiocarbon age of peat) on the molecular composition and structure of humic acids (HAs) in hummocky bogs of the Barents Sea coast was revealed using modern physicochemical methods of analysis (13C NMR spectroscopy and gas chromatography). Predictive scenarios for the evolution of organic matter in arctic hummocky peatlands are proposed, and indicators of their response to climate change are substantiated. The molar ratios x(H) : x(C) reflect the degree of condensation of HA molecules during the Holocene, as well as a significant transformation of HAs in peat deposits of the seasonally thawed layer as a result of the current climate warming trend. The calculated indicators of the degree of oxidation reflect the dynamics of the hydrological regime of the bog. It has been shown that, as a result of the stabilization of soil organic matter, the contribution of aromatic components increases, and the contents of paraffin and carbohydrate fragments in HAs decrease. In the composition of the latter, a redistribution of the proportion of pentoses and hexoses occurs due to a change in plant communities and a decrease in the contribution of long-chain aliphatic paraffin structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. N. Andreicheva and Yu. V. Golubeva, “Quaternary evolution of the environment and climate in the Arctic,” Vestn. Inst. Geol., Ross. Akad. Nauk, No. 4, 2–6 (2008).

    Google Scholar 

  2. L. N. Andreicheva, T. I. Marchenko-Vagapova, M. N. Buravskaya, and Yu. V. Golubeva, The Natural Environment of the Neopleistocene and Holocene in the European Part of Northeastern Russia (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  3. N. A. Artemkina, “Chemical composition of mosses in Murmansk oblast,” Tr. Fersman. Nauchn. Sessii, Geol. Inst., Kol’sk. Nauchn. Tsentra, Ross. Akad. Nauk, No. 14, 382–385 (2017).

    Google Scholar 

  4. Atlas of Climate and Hydrology of the Komi Republic, Ed. by A. I. Taskaev (Drofa, Moscow, 1997) [in Russian].

    Google Scholar 

  5. V. K. Bakhnov, Biogeochemical Aspects of Bogging (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  6. V. A. Bobrov, A. A. Bogush, G. A. Leonova, V. A. Krasnobaev, and G. N. Anoshin, “Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal,” Dokl. Earth Sci. 439, 1152–1156 (2011).

    Article  Google Scholar 

  7. R. S. Vasilevich, “Major and trace element compositions of hummocky frozen peatlands in the forest–tundra of Northeastern European Russia,” Geochem. Int. 56, 1276–1288 (2018). https://doi.org/10.1134/S0016702918100129

    Article  Google Scholar 

  8. R. S. Vasilevich and V. A. Beznosikov, “Effect of climate changes in the Holocene on the distribution of humic substances in the profile of forest–tundra peat mounds,” Eurasian Soil Sci. 50, 1271–1282 (2017). https://doi.org/10.7868/S0032180X17090106

    Article  Google Scholar 

  9. R. S. Vasilevich, V. A. Beznosikov, and E. D. Lodygin, “Molecular structure of humus substances in permafrost peat mounds in forest-tundra,” Eurasian Soil Sci. 52, 283–295 (2019). https://doi.org/10.1134/S1064229319010150

    Article  Google Scholar 

  10. S. E. Vomperskii, M. I. Vomperskaya, T. V. Glukhova, and N. A. Valyaeva, “Transformation of peat horizon in swampy southern taiga forests under the impact of surface drainage,” Eurasian Soil Sci. 50, 1186–1194 (2017). https://doi.org/10.1134/S1064229317100131

    Article  Google Scholar 

  11. S. E. Vompersky, A. A. Sirin, A. A. Sal’nikov, O. P. Tsyganova, and N. A. Valyaeva, “Estimation of forest cover extent over peatlands and paludified shallow peatlands in Russia,” Contemp. Probl. Ecol. 4, 734–741 (2011).

    Article  Google Scholar 

  12. D. N. Gabov, Ye. V. Yakovleva, R. S. Vasilevich, O. L. Kuznetsov, and V. A. Beznosikov, “Polycyclic aromatic hydrocarbons in peat mounds of the permafrost zone,” Eurasian Soil Sci. 52, 1038–1050 (2019). https://doi.org/10.1134/S1064229319090035

    Article  Google Scholar 

  13. Geocryological Map of the USSR, Scale 1 : 2 500 000, Ed. by E. D. Ershov and K. A. Kondrat’eva (Moscow State Univ., Moscow, 1998) [in Russian].

  14. Yu. V. Golubeva, “Climate and vegetation of the Holocene in the Komi Republic,” Litosfera, No. 2, 124–132 (2008).

    Google Scholar 

  15. M. I. Dergacheva, O. A. Nekrasova, M. V. Okoneshnikova, D. I. Vasil’eva, D. A. Gavrilov, K. O. Ochur, and E. E. Ondar, “Element ratios in humic acids as a source of information on the environment of soil formation,” Contemp. Probl. Ecol. 5, 497–504 (2012).

    Article  Google Scholar 

  16. G. A. Elina, A. D. Lukashov, and T. K. Yurkovskaya, Late Glacial Period and Holocene of Eastern Fennoscandia: Paleovegetation and Paleogeography (Karelian Scientific Center, Russian Academy of Sciences, Petrozavodsk, 2000) [in Russian].

    Google Scholar 

  17. A.A. Zverev and L.G. Babeshina, “Assessment of habitat conditions for sphagnum mosses in the West Siberian Plain by the key environmental factors: objects, materials, and fundamental methods,” Vestn. Tomsk. Gos. Univ., No. 325, 167–173 (2009).

  18. L. I. Inisheva, “Peat soils: genesis and classification,” Eurasian Soil Sci. 39, 699–704 (2006).

    Article  Google Scholar 

  19. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  20. I. V. Kovalev and N. O. Kovaleva, “Pool of lignin phenols in soils of forest ecosystems,” Lesovedenie, No. 2, 148–160 (2016).

    Google Scholar 

  21. N. O. Kovaleva and I. V. Kovalev, “Lignin phenols in soils as biomarkers of paleovegetation,” Eurasian Soil Sci. 48, 946–958 (2015). https://doi.org/10.1134/S1064229315090057

    Article  Google Scholar 

  22. O. L. Kuznetsov, “Wetland ecosystems of the Karelian part of the green belt of Fennoscandia,” Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, No. 6, 77–88 (2014).

    Google Scholar 

  23. S. A. Kutenkov and N. V. Stoikina, “Relict peatlands of the White Sea islands,” Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, No. 1, 52–56 (2010).

    Google Scholar 

  24. I. I. Lishtvan, E. T. Bazin, N. I. Gamayunov, and A. A. Terent’ev, Physics and Chemistry of Peat (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  25. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci. 47, 400–406 (2014). https://doi.org/10.1134/S1064229314010074

    Article  Google Scholar 

  26. L. N. Maksimova and E. N. Ospennikov, “Evolution of bog systems and permafrost conditions of the Bol’shezemel’skaya tundra in Holocene,” Kriosfera Zemli 16 (3), 53–61 (2012).

    Google Scholar 

  27. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  28. D. S. Orlov, Chemistry of Soils (Moscow State Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  29. A. V. Pastukhov, C. Knoblauch, E. V. Yakovleva, and D. A. Kaverin, “Markers of soil organic matter transformation in permafrost peat mounds of Northeastern Europe,” Eurasian Soil Sci. 51, 42–53 (2018). https://doi.org/10.1134/S1064229318010131

    Article  Google Scholar 

  30. E. P. Feofilova and I. S. Mysyakina, “Lignin: chemical structure, biodegradation, and practical application (a review), Appl. Biochem. Microbiol. 52, 573–581 (2016). https://doi.org/10.1134/S0003683816060053

    Article  Google Scholar 

  31. O. A. Chichagova, Radiocarbon Labeling of Soils Humus: Applications in Soil Science and Paleogeography (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  32. W. Amelung, D. Bossio, W. de Vries, I. Kögel-Knabner, J. Lehmann, R. Amundson, R. Bol, C. Collins, R. Lal, J. Leifeld, B. Minasny, G. Pan, K. Paustian, C. Rumpel, J. Sanderman, et al., “Towards a global-scale soil climate mitigation strategy,” Nat. Commun. 11, 5427 (2020). https://doi.org/10.1038/s41467-020-18887-7

    Article  Google Scholar 

  33. K. M. Buckeridge, K. E. Mason, N. P. McNamara, N. Ostle, J. Puissant, T. Goodall, R. I. Griffiths, A. W. Stott, and J. Whitaker, “Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization,” Commun. Earth Environ. 1, 36 (2020). https://doi.org/10.1038/s43247-020-00031-4

    Article  Google Scholar 

  34. M. Dergacheva, I. Fedeneva, N. Bazhina, O. Nekrasova, and V. Zenin, “Shestakovo site of Western Siberia (Russia): pedogenic features, humic substances and paleoenvironment reconstructions for last 20–25 ka,” Quat. Int. 420, 199–207 (2016).

    Article  Google Scholar 

  35. R. M. B. O. Duarte, A. M. S. Silva, and A. C. Duarte, “Two-dimensional NMR studies of water-soluble organic matter in atmospheric aerosols,” Environ. Sci. Technol. 42, 8224–8230 (2008).

    Article  Google Scholar 

  36. S. S. Fong and M. Murtedza, “Chemical characterization of humic substances occurring in the peats of Sarawak, Malaysia,” Org. Geochem. 38 (6), 967–976 (2007). https://doi.org/10.1016/j.orggeochem.2006.12.010

    Article  Google Scholar 

  37. D. Gabov, E. Yakovleva, and R. Vasilevich, “Vertical distribution of PAHs during the evolution of permafrost peatlands of the European arctic zone,” Appl. Geochem. 123, 104790 (2020).

    Article  Google Scholar 

  38. D. Gondar, R. Lopez, S. Fiol, J. M. Antelo, and F. Arce, “Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of fan ombrotrophic peat bog,” Geoderma 126 (3), 367–374 (2005). https://doi.org/10.1016/j.geoderma.2004.10.006

    Article  Google Scholar 

  39. E. I. Iavid, V. N. Kondakova, V. I. Polyakov, and E. V. Abakumov, “Diversity and main properties of soils of the Gronfjord area (Svalbard archipelago),” Czech Polar Rep. 8 (1), 43–59 (2018). https://doi.org/10.5817/CPR2018-1-4

    Article  Google Scholar 

  40. M. Klavins and O. Purmalis, “Properties and structure of raised bog peat humic acids,” J. Mol. Struct. 1050, 103–113 (2013). https://doi.org/10.1016/j.molstruc.2013.07.021

    Article  Google Scholar 

  41. J. Krumins, M. Klavins, and R. Krukovskis, “Characterisation of humic acids in fen peat,” Int. J. Agric. Resour., Gov. Ecol. 16 (1), 74 (2020). https://doi.org/10.1504/IJARGE.2020.107066

    Article  Google Scholar 

  42. E. Lodygin, V. Beznosikov, and E. Abakumov, “Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East,” Pol. Polar Res. 38 (2), 125–147 (2017). https://doi.org/10.1515/popore-2017-0007

    Article  Google Scholar 

  43. V. Polyakov, E. Zazovskaya, and E. Abakumov, “Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen,” Pol. Polar Res. 40 (2), 105–120 (2019). https://doi.org/10.24425/ppr.2019.128369

    Google Scholar 

  44. O. Purmalis and M. Klavins, “Formation and changes of humic acid properties during peat humification process within ombrotrophic bogs,” Open J. Soil Sci. 2, 100–110 (2012). https://doi.org/10.4236/ojss.2012.22015

    Article  Google Scholar 

  45. G. Ricca and F. Severini, “Structural investigations of humic substances by IR-FT, 13C-NMR spectroscopy and comparison with a maleic oligomer of known structure,” Geoderma 58 (3–4), 233–244 (1993).

    Article  Google Scholar 

  46. J. Routh, G. Hugelius, P. Kuhry, T. Filley, P.K. Tillman, M. Becher, and P. Crill, “Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic,” Chem. Geol. 368, 104–117 (2014).

    Article  Google Scholar 

  47. M. P. Sartakov, I. D. Komissarov, and L. A. Shundrin, “The peat humic acids electronic paramagnetism research for Ob-Irtysh flood plains,” Res. J. Pharm., Biol. Chem. Sci. 6 (5), 1685–1692 (2015).

    Google Scholar 

  48. M. P. Sartakov, A. A. Novikov, and N. V. Chukhareva, “Study of humic acids in various types and kinds of peats at Khantymansi Autonomous Area–Ygra by NMR 13C spectroscopy,” Int. J. Pharm. Technol. 8 (2), 14204–14213 (2016).

    Google Scholar 

  49. J. Sire and M. Klavins, “Influence of the humification process on the properties of peat humic acids,” Proc. Lat. Acad. Sci., Sect. B 64 (3), 167–173 (2010). https://doi.org/10.2478/v10046-010-0029-2

    Article  Google Scholar 

  50. V. A. Stepanova, O. S. Pokrovsky, J. Viers, N. P. Mironycheva-Tokareva, N. P. Kosykh, and E. K. Vishnyakova, “Elemental composition of peat profiles in western Siberia: effect of the micro-landscape, latitude position and permafrost coverage,” Appl. Geochem. 53, 53–70 (2015).

    Article  Google Scholar 

  51. R. S. Swift, “Methods of soil analysis,” in Methods of Soil Analysis, Part 3: Chemical Methods, Soil Sci. Soc. Am. Book Ser., no. 5 (Soil Science Society of America, Madison, WI, 1996), pp. 1018–1020.

  52. R. Vasilevich, E. Lodygin, V. Beznosikov, and E. Abakumov, “Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers,” Sci. Total Environ. 615, 1229–1238 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.053

    Article  Google Scholar 

  53. R. S. Vasilevich and E. D. Lodygin, “Transformation of high molecular weight organic compounds in Arctic peatlands under climate change,” IOP Conf. Ser.: Earth Environ. Sci. 862, 012032 (2021). https://doi.org/10.1088/1755-1315/862/1/012032

  54. A. Winkler, L. Haumaier, and W. Zech, “Insoluble alkyl carbon components in soils derive mainly from cutin and suberin,” Org. Geochem. 36 (4), 519–529 (2005).

    Article  Google Scholar 

  55. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015.

    Google Scholar 

  56. S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Permafrost and the global carbon budget,” Science 312, 1612–1613 (2006).

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the state assignment of the Institute of Biology of the Komi Science Center, Ural Branch of the Russian Academy of Sciences no. 122040600023-8 and the state assignment of the Institute of Biology of the Karelian Research Center of the Russian Academy of Sciences no. FMEN-2022-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Vasilevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilevich, R.S., Kuznetsov, O.L., Lodygin, E.D. et al. Evolution of Organic Matter in Hummocky Bogs on the Barents Sea Coast in a Changing Climate. Eurasian Soil Sc. 55, 940–956 (2022). https://doi.org/10.1134/S1064229322070122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322070122

Keywords:

Navigation