Skip to main content
Log in

The effect of humic acids and their complexes with iron on the functional status of plants grown under iron deficiency

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of humic acids (HAs) and their iron complexes (Fe–HAs) on the input of the main mineral elements into wheat seedlings, as well as on the efficiency of photosynthesis and the lipid profile of plants, under iron deficiency has been studied. The input of iron from Fe–HA complexes and its predominant accumulation in roots are demonstrated. It is found that HAs increase the efficiency of photosynthesis due to enhanced electron transport in photosystem II. It is shown that the application of HAs and Fe–HAs is accompanied by an enhanced input of Zn into plants, which could increase the antioxidant status of plants under iron deficiency conditions. In addition, a pronounced increase in the content of lipids in plants is revealed, which is indicative of the effect of HAs on plant metabolism. The obtained results suggest that the positive effect of Fe–HAs and HAs on plants under iron deficiency conditions is due to a combination of factors, among which the effect of HAs on the antioxidant status of plants and the plant lipid metabolism predominates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Bityutskii, Microelements Essential for Plants (DEAN, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  2. Yu. N. Vodyanitskii and S. A. Shoba, “Biogeochemistry of iron in overmoistened soils: a review,” Pochvovedenie, No. 9, 1047–1059 (2013). doi 10.7868/S0032180X13090128

    Google Scholar 

  3. Vl. V. Kuznetsov and G. A. Dmitrieva, The Plant Physiology (Vysshaya Shkola, Moscow, 2006) [in Russian].

    Google Scholar 

  4. V. G. Mineev, Agrochemistry (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  5. L. K. Ostrovskaya, Role of Iron in Flora and Carbonate Chlorosis (Naukova Dumka, Kiev, 1993) [in Russian].

    Google Scholar 

  6. A. D. Fokin, “Role of humic compounds in mineral nutrition of plants,” in Humic Fertilizers: Theory and Implementation, Tr. Dnepropetrovsk. S-kh. Inst. (Dnepropetrovsk, 1975), Vol. 5, pp. 38–56.

    Google Scholar 

  7. M. Afsharnia, N. Aliasgharzad, R. Hajiboland, and S. Oustan, “The effect of light intensity and zinc deficiency on antioxidant enzyme activity, photosynthesis of corn,” Int. J. Agron. Plant Prod. 4 (3), 425–428 (2013).

    Google Scholar 

  8. I. Azcona, I. Pascual, J. Aguirreolea, M. Fuentes, J. M. García-Mina, and M. Sánchez-Díaz, “Growth and development of pepper are affected by humic substances derived from composted sludge,” J. Plant Nutr. Soil Sci. 174, 916–924 (2011).

    Article  Google Scholar 

  9. Biochemistry and Molecular Biology of Plants, Ed. by B. B. Buchanan, W. Gruissem, and R. L. Jones (Wiley, New York, 2002).

  10. M. P. Bocanegra, J. C. Lobartini, and G. A. Orioli, “Iron-humate as a source of iron for plants,” Comm. Soil Sci. Plant Anal. 35 (17–18), 2567–2576 (2004).

    Article  Google Scholar 

  11. L. Boudière, M. Michaud, D. Petroutsos, F. Rébeillé, D. Falconet, O. Bastien, S. Roy, G. Finazzi, N. Rolland, J. Jouhet, M. A. Block, and E. Maréchal, “Glycerolipids in photosynthesis: composition, synthesis and trafficking,” Biochim. Biophys. Acta 1837, 470–480 (2014).

    Article  Google Scholar 

  12. A. Cartelat, Z. G. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, and I. Moya, “Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. 91 (1), 35–49 (2005).

    Article  Google Scholar 

  13. M. De Nobili, G. Bragato, J. M. Alcaniz, A. Puigbo, and L. Comellas, “Characterization of electrophoretic fractions of humic substances with different electrofocusing behavior,” Soil Sci. 150, 763–770 (1990).

    Article  Google Scholar 

  14. A. de Santiago, J. M. Quintero, E. Carmona, and A. Delgado, “Humic substances increase the effectiveness of iron sulfate and vivianite preventing iron chlorosis in white lupine,” Biol. Fertil. Soils 44 (6), 875–883 (2008).

    Article  Google Scholar 

  15. J. M. Garcia-Mina, “Stability, solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost,” Org. Geochem. 37, 1960–1972 (2006).

    Article  Google Scholar 

  16. Y. Goulas, Z. G. Cerovic, A. Cartelat, and I. Moya, “Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence,” Appl. Opt. 43 (23), 4488–4496 (2004).

    Article  Google Scholar 

  17. J. L. Hall and L. E. Williams, “Transition metal transporters in plants,” J. Exp. Bot. 54 (393), 2601–2613 (2003).

    Article  Google Scholar 

  18. S. A. Hasan, S. Hayat, and A. Ahmad, “Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars,” Chemosphere 84, 1446–1451 (2011).

    Article  Google Scholar 

  19. O. I. Klein, E. P. Isakova, Yu. I. Deryabina, N.A.Kulikova, G. A. Badun, M. G. Chernysheva, E. V. Stepanova, and O. V. Koroleva, “Humic substances enhance growth and respiration in the basidiomycetes Trametes maxima under carbon limited conditions,” J. Chem. Ecol. 40, 643–652 (2014).

    Article  Google Scholar 

  20. R. Koga, T. Meng, E. Nakamura, C. Miura, N. Irino, S. Yahara, and R. Kondo, “Model examination for the effect of treading stress on young green barley (Hordeum vulgare),” Am. J. Plant Sci., No. 4, 174–181 (2013).

    Article  Google Scholar 

  21. E. R. Kotlova, S. V. Senik, T. Kücher, A. L. Shavarda, A. A. Kiyashko, N. V. Psurtseva, N. F. Sinyutina, and R. A. Zubarev, “Alterations in the composition of membrane glycero-and sphingolipids in the course of Flammulina velutipes surface culture development,” Microbiology 78 (2), 193–201 (2009).

    Article  Google Scholar 

  22. S. Krumova, M. Zhiponova, K. Dankov, V. Velikova, K. Balashev, T. Andreeva, E. Russinova, and S. Taneva, “Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function,” J. Photochem. Photobiol. B: Biol. 126, 97–104 (2013).

    Article  Google Scholar 

  23. N. A. Kulikova, G. A. Badun, V. I. Korobkov, M. G. Chernysheva, E. A. Tsvetkova, D. P. Abroskin, A. I. Konstantinov, B. T. Zaitchik, A. O. Ruzhitsky, and I. V. Perminova, “Accumulation of coal humic acids by wheat seedlings: direct evidence using tritium autoradiography and occurrence in lipid fraction,” J. Plant Nutr. Soil Sci. 177, 875–883 (2014).

    Article  Google Scholar 

  24. N. A. Kulikova, I. V. Perminova, G. A. Badun, M. G. Chernysheva, O. V. Koroleva, and E. A. Tsvetkova, “Estimation of uptake of humic substances from different sources by Escherichia coli cells under optimum and salt stress conditions by use of tritiumlabeled humic materials,” Appl. Environ. Microbiol. 76 (18, 6223–6230 (2010).

    Article  Google Scholar 

  25. E. Monge, C. Perez, A. Pequerul, P. Madero, and J. Val, “Effect of iron chlorosis on mineral nutrition and lipid composition of thylakoid biomembrane in Prunus persica (L.),” Plant Soil. 154, 97–102 (1993).

    Article  Google Scholar 

  26. A. Nebbioso and A. Piccolo, “Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures,” Biomacromolecules, No. 12, 1187–1199 (2011).

    Article  Google Scholar 

  27. B. W. Nichols, “Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography,” Biochem. Biophys. Acta 70, 417–425 (1963).

    Article  Google Scholar 

  28. M. Nikolic, S. Cesco, V. Roemheld, Z. Varanini, and R. Pinton, “Uptake of iron (59Fe) complexed to waterextractable humic substances by sunflower leaves,” J. Plant Nutr. 26 (10–11), 2243–2252 (2003).

    Article  Google Scholar 

  29. J. O. Ogweno, X. S. Song, K. Shi, W. H. Hu, W. H.Mao, Y. H. Zhou, J. Q. Yu, and S. Nogues, “Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum,” J. Plant Growth Regul. 27, 49–57 (2008).

    Article  Google Scholar 

  30. I. Sakurai, N. Mizusawa, S. Ohashi, M. Kobayashi, and H. Wada, “Effects of the lack of phosphatidylglycerol on the donor side of photosystem II,” Plant Physiol. 144, 1336–1346 (2007).

    Article  Google Scholar 

  31. I. Sakurai, N. Mizusawa, H. Wada, and N. Sato, “Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II,” Plant Physiol. 145, 1361–1370 (2007).

    Article  Google Scholar 

  32. Y. Shi, D. H. Byrne, D. W. Reed, and R. H. Loeppert, “Influence of bicarbonate level on iron-chlorosis development and nutrient-uptake of the peach rootstock Montclar,” J. Plant Nutr. 16 (9), 1675–1689 (1993).

    Article  Google Scholar 

  33. S. Thoiron, N. Pascal, and J.-F. Briat, “Impact of iron deficiency and iron re-supply during the early stages of vegetative development in maize (Zea mays L.),” Plant, Cell Environ. 20, 1051–1061 (1997).

    Article  Google Scholar 

  34. S. Trevisan, O. Francioso, S. Quaggiotti, and S. Nardi, “Humic substances biological activity at the plant-soil interface,” Plant Signal. Behav., Nos. 5–6, 635–643 (2010).

    Article  Google Scholar 

  35. S. Zancan, I. Suglia, N. La Rocca, and R. Ghisi, “Effects of UV-B radiation on antioxidant parameters of iron-deficient barley plants,” Environ. Exp. Bot. 63, 71–79 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Abros’kin.

Additional information

Original Russian Text © D.P. Abros’kin, M. Fuentes, J.M. Garcia-Mina, O.I. Klyain, S.V. Senik, D.S. Volkov, I.V. Perminova, N.A. Kulikova, 2016, published in Pochvovedenie, 2016, No. 10, pp. 1167–1177.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abros’kin, D.P., Fuentes, M., Garcia-Mina, J.M. et al. The effect of humic acids and their complexes with iron on the functional status of plants grown under iron deficiency. Eurasian Soil Sc. 49, 1099–1108 (2016). https://doi.org/10.1134/S1064229316100021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316100021

Keywords

Navigation