Skip to main content
Log in

Enzymatic activity inside and outside of water-stable aggregates in soils under different land use

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A method is presented for assessing the distribution of enzymatic activity inside and outside of water-stable aggregates. Two samples of water-stable aggregates >1 mm have been isolated from dry aggregates of 1–2 mm. To determine the enzymatic activity, a substrate has been added to one of the samples without disaggregation; the other sample has been preliminarily disaggregated. Enzymatic activity within waterstable aggregates has been assessed from the difference between the obtained results under the supposition that the penetration of substrate within the water-saturated aggregates is hampered, and enzymatic reactions occur only at the periphery. The levels and distributions of enzymatic (peroxidase, polyphenol oxidase, and catalase) activities in water-stable aggregates of soddy-podzolic soils under forest and plowland and typical chernozems of long-term field experiments have been studied. The peroxidase, polyphenol oxidase, and catalase activities of water-stable aggregates vary from 6 to 23, from 7 to 30, and from 5 to 7 mmol/(g h), respectively. The ratio between the enzymatic activities inside and outside of soil aggregates showed a higher dependence on soil type and land use, as well as on the input of organic matter and the structural state, than the general activity level in water-stable aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Abramyan, “Change of enzymatic activity of soil affected by natural and anthropogenic factors,” Pochvovedenie, No. 7, 70–82 (1992).

    Google Scholar 

  2. E. E. Andronov, S. N. Petrova, A. G. Pinaev, E. V. Pershina, S. Z. Rakhimgalieva, K. M. Akhmedenov, A. V. Gorobets, and N. K. Sergaliev, “Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and realtime PCR techniques,” Eurasian Soil Sci. 45 (2), 147–156 (2012).

    Article  Google Scholar 

  3. O. A. Berestetskii, “Dynamics of microbial communities composition affected by soil cultivation in progressive land agriculture,” in Ecology of Soil Microorganisms and Microbiological Implementation in Agriculture (Academy of Sciences of the Soviet Union, Moscow, 1975), pp. 33–35.

    Google Scholar 

  4. A. A. Bobrov and Yu. G. Gel’tser, “Influence of soil cultivation on biological activity of soddy-podzolic soils,” in Structure and Functions of Soil Microbial Communities under Different Anthropogenic Load (Naukova Dumka, Kiev, 1973), pp. 146–150.

    Google Scholar 

  5. S. N. Gorbov and O. S. Bezuglova, “Biological activity of urban soils (by example of Rostov-on-Don city),” Nauch. Zh. Kuban. Gos. Agrar. Univ., No. 85(1), (2013).

    Google Scholar 

  6. A. E. Gul’ko and F. Kh. Khaziev, “Phenol oxidases in soils: production, immobilization, and activity,” Pochvovedenie, No. 11, 55–67 (1992).

    Google Scholar 

  7. E. V. Dadenko, M. A. Myasnikova, K. Sh. Kazeev, S. I. Kolesnikov, and V. D. Val’kov, “Biological activity of an ordinary chernozem under long-term plowing,” Pochvovedenie, No. 6, 724–733 (2014).

    Google Scholar 

  8. E. V. Dadenko, M. A. Prudnikova, K. Sh. Kazeev, and S. I. Kolesnikov, “Application of the parameters of enzymatic activity for the analysis of agricultural soils,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 15 (3(4)), (2013).

    Google Scholar 

  9. T. A. Devyatova and T. N. Kramareva, “Indication of soil pollution with heavy metals via determination of soil enzymatic activity,” in Chernozems of Central Russia: Genesis, Geography, and Evolution (Voronezh State University, Voronezh, 2004), pp. 342–345.

    Google Scholar 

  10. O. N. Zabelina, “Enzymatic activity of soils in natural recreational landscapes of urban territories,” Sovrem. Probl. Nauki Obraz., No. 2, (2014).

    Google Scholar 

  11. D. G. Zvyagintsev, Soil Microbiology and Biochemistry (Moscow State University, Moscow, 1991) [in Russian].

    Google Scholar 

  12. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Moscow State University, Moscow, 2005) [in Russian].

    Google Scholar 

  13. G. M. Zenova, A. L. Stepanov, A. A. Likhacheva, and N. A. Manucharova, Practical Manual on Soil Biology (Moscow State University, Moscow, 2002) [in Russian].

    Google Scholar 

  14. V. I. Kamenshchikova, O. Z. Eremchenko, and I. E. Shestakov, “Biochemical activity of soils in Perm city,” Vestn. Perm. Gos. Univ., Ser.: Biol., No. 2, 38–40 (2011).

    Google Scholar 

  15. Classification and Diagnostics of Soils of the Soviet Union (Kolos, Moscow, 1977) [in Russian].

  16. O. I. Klein, N. A. Kulikova, A. I. Konstantinov, T. V. Fedorova, E. O. Landesman, and O. V. Koroleva, “Transformation of humic substances of highly oxidized brown coal by basidiomycetes Trametes hirsuta and Trametes maxima,” Appl. Biochem. Microbiol. 49 (3), 287–295 (2013).

    Article  Google Scholar 

  17. M. V. Kovalenko and G. K. Markovskaya, “Influence of soil tillage on its enzymatic activity,” Vestn. Kazan. Gos. Agrar. Univ. 8 (1), 108–111 (2013).

    Google Scholar 

  18. B. M. Kogut, S. A. Sysuev, and V. A. Kholodov, “Water stability and labile humic substances of typical chernozems under different land uses,” Eurasian Soil Sci. 45 (5), 496–502 (2012).

    Article  Google Scholar 

  19. M. M. Kononova, Soil Organic Matter (Academy of Sciences of the Soviet Union, Moscow, 1963) [in Russian].

    Google Scholar 

  20. I. V. Kuznetsova, N. A. Azovtseva, and A. G. Bondarev, “Normatives of changes in the physical properties of soils in the steppe, dry steppe, and semidesert zones of Russia,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 67, 3–19 (2011).

    Google Scholar 

  21. I. V. Kuznetsova, V. F. Utkaeva, and A. G. Bondarev, “Normatives of changes in the physical properties of chernozems in the forest-steppe zone of European Russia under conditions of their intensive agricultural use,” Eurasian Soil Sci. 46 (12), 1194–1202 (2013).

    Article  Google Scholar 

  22. V. F. Kuprevich and T. A. Shcherbakova, Soil Enzymology (Nauka i Tekhnika, Minsk, 1966) [in Russian].

    Google Scholar 

  23. V. T. Lobkov, A. S. Novikova, and A. A. Zabrodkin, “Fertility of dark gray forest soil under different tillage technologies,” Zernovoe Khoz. Ross., No. 2, 27–31 (2013).

    Google Scholar 

  24. V. V. Medvedev, Structure of Soil: Methods, Genesis, Classification, Evolution, Geography, Monitoring, and Protection (13 Tipografiya, Kharkov, 2008) [in Russian].

    Google Scholar 

  25. E. Yu. Milanovskii, Humic Soil Substances as the Natural Hydrophobic–Hydrophilic Compounds (GEOS, Moscow, 2009) [in Russian].

    Google Scholar 

  26. B. N. Mynbaeva and A. V. Medvedeva, “Suppression of biochemical activity of polluted urban soils,” Izv. Altai. Gos. Univ., Nos. 2–3, 23–25 (2011).

    Google Scholar 

  27. M. A. Myasnikova, M. P. Chernikova, K. Sh. Kazeev, O. Yu. Erlmolaeva, S. I. Kolesnikova, Yu. S. Kozun’, Yu. V. Akimenko, and E. V. Yarovaya, “Biological features of chernozems in Botanical Garden of the Southern Federal University,” Nauch. Zh. Kuban. Gos. Agrar. Univ. 104 (10), (2014).

    Google Scholar 

  28. A. D. Neklyudov, “Status of soils and its enzymatic activity,” Ekol. Sist. Pribory, No. 3, 3–14 (2007).

    Google Scholar 

  29. D. S. Orlov, Soil Humic Acids and General Theory of Humification (Moscow State University, Moscow, 1990) [in Russian].

    Google Scholar 

  30. L. N. Purtova and E. A. Zharikova, “Catalase activity in urban soils of the south of the Far East,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 15 (3), 1009–1011 (2013).

    Google Scholar 

  31. N. V. Ras’kova, M. R. Arsen’eva, and D. G. Zvyagintsev, “Influence of cultivation on the biochemical properties of soddy-podzolic soils,” Vestn. Mosk. Gos. Univ., Ser. 17: Pochvoved., No. 4, 33–37 (1981).

    Google Scholar 

  32. E. V. Stepina, E. B. Smirnova, and A. I. Zolotukhin, “Ecological and genetic aspects of humification of chernozems in the western right-bank part of Saratov oblast,” Sovrem Probl. Nauki Obraz., No. 3, (2012).

    Google Scholar 

  33. M. I. Umer, Candidate’s Dissertation in Biology (Moscow, 2013).

    Google Scholar 

  34. F. Kh. Khaziev, Practical Manual on Soil Enzymology (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  35. F. Kh. Khaziev, Multiplex Ecological Analysis of Enzymatic Activity of Soils (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  36. F. Kh. Khaziev and A. E. Gul’ko, “Some properties of humic peroxidase complex,” Pochvovedenie, No. 2, 30–36 (1990).

    Google Scholar 

  37. F. Kh. Khaziev and A. E. Gul’ko, “Enzymatic activity of soils of agrocenoses and prospects for its study,” Pochvovedenie, No. 8, 88–103 (1991).

    Google Scholar 

  38. V. A. Kholodov, N. V. Yaroslavtseva, M. A. Yashin, A. S. Frid, V. I. Lazarev, Z. N. Tyugai, and E. Yu. Milanovskii, “Contact angles of wetting and water stability of soil structure,” Eurasian Soil Sci. 48 (6), 600–607 (2015).

    Article  Google Scholar 

  39. Yu. G. Chendev, L. G. Smirnova, A. N. Petin, N. S. Kukharuk, and L. L. Novykh, “Long-term changes in the humus content of cultivated chernozems in the center of the East European Plain,” Dostizh. Nauki Tekhn., No. 8, 6–9 (2011).

    Google Scholar 

  40. A. I. Chunderova, “Influence of crop rotation and continuous sawing on activity of biochemical processes in a soddy-podzolic soil,” in Microbiology of Farming (All-Russia Research Institute for Agricultural Microbiology, Leningrad, 1970), pp. 59–65.

    Google Scholar 

  41. E. V. Shein, Lecturers on Soil Physics (Moscow State University, Moscow, 2005) [in Russian].

    Google Scholar 

  42. E. V. Shein and E. Yu. Milanovskii, “The role of organic matter in the formation and stability of soil aggregates,” Eurasian Soil Sci. 36 (1), 51–58 (2003).

    Google Scholar 

  43. T. A. Shcherbakova, Enzymatic Activity of Soils and Transformation of Soil Organic Matter (Nauka i Tekhnika, Minsk, 1983) [in Russian].

    Google Scholar 

  44. V. Acosta-Martínez and M. A. Tabatabai, “Enzyme activities in a limed agricultural soil,” Biol. Fertil. Soils 31 (1), 85–91 (2000).

    Article  Google Scholar 

  45. E. M. Bach and K. S. Hofmockel, “Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity,” Soil Biol. Biochem. 69, 54–62 (2014).

    Article  Google Scholar 

  46. M. Brzezińska, Z. Stępniewska, and W. Stępniewski, “Dehydrogenase and catalase activity of soil irrigated with municipal wastewater,” Pol. J. Environ. Stud. 10 (5), 307–311 (2001).

    Google Scholar 

  47. R. G. Burns, J. L. De Forest, J. Marxsen, R. L. Sinsabaugh, M. E. Stromberger, M. D. Wallenstein, M. N. Weintraub, and A. Zoppini, Soil enzymes in a changing environment: current knowledge and future directions,” Soil Biol. Biochem. 58, 216–234 (2013).

    Article  Google Scholar 

  48. E. J. B. N. Cardoso, R. L. F. Vasconcellos, D. Bini, M. Y. H. Miyauchi, C. A. dos Santos, P. R. L. Alves, A. M. de Paula, A. S. Nakatani, J. M. Pereira, and M. A. Nogueira, “Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?” Sci. Agric. 70 (4), 274–289 (2013).

    Article  Google Scholar 

  49. C. Chenu, J. Hassink, and J. Bloem, “Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition,” Biol. Fertil. Soils 34, 349–356 (2001). doi: 10.1007/s003740100419

    Article  Google Scholar 

  50. R. P. Dick, “Soil enzyme activity as an indicator of soil quality,” in Defining Soil Quality for a Sustainable Environment, Ed. by J. W. Doran, et al. (Science Society of America and American Society of Agronomy, Madison, WI, 1994), pp. 107–124.

    Google Scholar 

  51. E. T. Elliott, “Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils,” Soil Sci. Soc. Am. J. 50, 627–633 (1986).

    Article  Google Scholar 

  52. T. Hattori, “Soil aggregates as microhabitats of microorganisms,” Biol. Fertil. Soils 6, 189–203 (1988).

    Google Scholar 

  53. S. Kalembasa and B. Symanowicz, “Enzymatic activity of soil after supplying various waste organic matter, ash and mineral fertilizers,” Pol. J. Environ. Stud. 21 (6), 1635–1641 (2012).

    Google Scholar 

  54. S. Khan, Q. Cao, A. Hesham, Y. Xia, and J. He, “Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb,” Chin. J. Environ. Sci. 19 (7), 834–840 (2007).

    Article  Google Scholar 

  55. A. N. Kravchenko, W. Wang, A. J. M. Smucker, and M. L. Rivers, “Long-term differences in tillage and land use affect intra-aggregate pore heterogeneity,” Soil Sci. Soc. Am. J. 75, 1658–1666 (2011).

    Article  Google Scholar 

  56. Y. R. Liu, X. Li, Q. R. Shen, and Y. C. Xu, “Enzyme activity in water-sable soil aggregates as affected by long-term application of organic manure and chemical fertilizer,” Pedosphere 23 (1), 111–119 (2013).

    Article  Google Scholar 

  57. D. L. Mummey and P. D. Stahl, “Analysis of soil whole- and inner-microaggregate bacterial communities,” Microb. Ecol. 48, 41–50 (2004). doi: 10.1007/s00248-003-1000-4

    Article  Google Scholar 

  58. P. Nannipieri, L. Giagnoni, G. Renella, E. Puglisi, B. Ceccanti, G. Masciandaro, F. Fornasier, M. C. Moscatelli, and S. Marinari, “Soil enzymology: classical and molecular approaches,” Biol. Fertil. Soils 48 (7), 743–762 (2012).

    Article  Google Scholar 

  59. L. Ranjard, F. Poly, J. Combrisson, A. Richaume, F. Gourbiere, J. Thioulouse, and S. Nazaret, “Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA),” Microb. Ecol. 39, 263–272 (2000). doi: 10.1007/s002480000032

    Google Scholar 

  60. L. Ranjard, A. Richaume, L. Jocteur-Monrozier, and S. Nazaret, “Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location,” FEMS Microbiol. Ecol. 24, 321–331 (1997). doi: 10.1111/ j.1574-6941.1997.tb00449.x

    Article  Google Scholar 

  61. R. Reichel, D. Patzelt, C. Barleben, I. Rosendahl, R. H. Ellerbrock, and S. Thiele-Bruhn, “Soil microbial community responses to sulfadiazine-contaminated manure in different soil microhabitats,” Appl. Soil Ecol. 80, 15–25 (2014).

    Article  Google Scholar 

  62. Z. J. Shi, Y. Lu, Z. G. Xu, and S. L. Fu, “Enzyme activities of urban soils under different land use in the Shenzhen city, China,” Plant, Soil Environ. 54 (8), 341–346 (2008).

    Google Scholar 

  63. R. L. Sinsabaugh, “Phenol oxidase, peroxidase and organic matter dynamics of soil,” Soil Biol. Biochem. 42, 391–404 (2010).

    Article  Google Scholar 

  64. J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res. 79, 7–31 (2004).

    Article  Google Scholar 

  65. J. Six, K. Paustian, E. T. Elliott, and C. Combrink, “Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon,” Soil Sci. Soc. Am. J. 64, 689–693 (2000).

    Article  Google Scholar 

  66. J. Skujins, “History of abiotic soil enzyme research,” in Soil Enzymes, Ed. by R. G. Burns (Academic, London, 1978), pp. 1–50.

    Google Scholar 

  67. E. Urbanek, P. Hallett, D. Feeney, and R. Horn, “Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems,” Geoderma 140, 147–155 (2007).

    Article  Google Scholar 

  68. J. Wyszkowska, M. Kucharski, J. Kucharski, and A. Borowil, “Activity of dehydrogenases, catalase and urease in copper polluted soil,” J. Elementol. 14 (3), 605–617 (2009).

    Google Scholar 

  69. World Reference Base for Soil Resources 2014, A Framework for International Classification, Correlation, and Communication, Word Soil Resource Report No. 106 (Food and Agriculture Organization, Rome, 2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Garbuz.

Additional information

Original Russian Text © S.A. Garbuz, N.V. Yaroslavtseva, V.A. Kholodov, 2016, published in Pochvovedenie, 2016, No. 3, pp. 398–407.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbuz, S.A., Yaroslavtseva, N.V. & Kholodov, V.A. Enzymatic activity inside and outside of water-stable aggregates in soils under different land use. Eurasian Soil Sc. 49, 367–375 (2016). https://doi.org/10.1134/S1064229316030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316030030

Keywords

Navigation