Skip to main content
Log in

Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The dynamics of the organic matter composition in soddy-podzolic soils during the natural reforestation of an arable land in the southern taiga zone have been discussed. It has been shown that the contents of the total and labile carbon in the old plow horizon increase with the age of the fallow in the chronosequence of soils established in the Parfen’evo district of Kostroma oblast. The parameters characterizing the labile soil organic matter include the contents of the carbon extractable by mild chemical extractants (distilled water, 0.1 M K2SO4 solution, 0.1 M neutral Na4P2O7 solution), the microbial biomass, and the light fraction. The granulo-densimetric fractionation has shown that the contents of carbon in the light and organomineral fractions of the soil vary in the course of the postagrogenic succession. The content of the clay-fraction carbon increases and its portion in the total carbon of the soil decreases at the transition from the plowland to the forest. The reforestation of agrosoddy-podzolic soils enhances the physical protection of the soil organic matter due to the increase in the portion of microaggregate carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Ananyeva, E. A. Susyan, I. M. Ryzhova, E. O. Bocharnikova, and E. V. Stolnikova, “Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenoses and in native spruce forests of the southern taiga (Kostroma oblast),” Eur. Soil Sci. 42(9), 1029–1037 (2009).

    Article  Google Scholar 

  2. B. A. Borisov, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2008).

    Google Scholar 

  3. A. Ya. Vanyushina and L. S. Travnikova, “Organicmineral interactions in soils: a review,” Eur. Soil Sci. 36(4), 379–387 (2003).

    Google Scholar 

  4. A. S. Vladychenskii, I. M. Ryzhova, V. M. Telesnina, and R. T. Galiakhmetov, “Spatial-temporal dynamics of the organic carbon content in soddy-podzolic soils of postagrogenic biogeocenoses,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 3–10 (2009).

    Google Scholar 

  5. I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eur. Soil Sci. 44(10), 1077–1089 (2011).

    Article  Google Scholar 

  6. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  7. B. M. Kogut, “Principles and methods of assessing the content of labile organic matter in plowed soils,” Eur. Soil Sci. 36(3), 283–290 (2003).

    Google Scholar 

  8. A. V. Litvinovich and O. Yu. Pavlova, “Changes in the humus status of a layland sandy gleyic soddy-podzolic soil,” Eur. Soil Sci. 40(11), 1181–1186 (2007).

    Article  Google Scholar 

  9. D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Denisenko, and T. T. Nefedova, Dynamics of Agricultural Lands of Russia in the 20th Century and Postagrogenic Restoration of Vegetation and Soils (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  10. V. G. Mamontov, R. A. Afanas’eva, L. P. Rodionova, and O. M. Bykanova, “On the problem of labile organic matter in soils,” Plodorodie, No. 2, 20–22 (2008).

    Google Scholar 

  11. V. G. Mamontov, L. P. Rodionova, F. F. Bykovskii, and A. Siradzh, “Labile soil organic matter: nomenclature scheme, methods of examination, and agroecological functions,” Izv. Timiryaz. Sel’skokhoz. Akad., No. 4, 93–108 (2000).

    Google Scholar 

  12. Methods of Stationary Soil Studies, Ed. by I. N. Skrynnikovoi (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  13. E. G. Morgun and M. I. Makarov, “Use of sodium polytungstate in the granulo-densimetric fractionation of soil material,” Eur. Soil Sci. 44(4), 394–398 (2011).

    Article  Google Scholar 

  14. A. A. Romanovskaya, “Organic carbon in long-fallow lands of Russia,” Eur. Soil Sci. 39(1), 44–52 (2006).

    Article  Google Scholar 

  15. I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics and structure of carbon reserves in the postagrogenic ecosystems of the southern taiga,” Eur. Soil Sci. 47(9), (2014).

    Google Scholar 

  16. V. M. Semenov, I. K. Kravchenko, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, M. Gispert, and J. Pardini, “Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems,” Eur. Soil Sci. 39(3), 251–260 (2006).

    Article  Google Scholar 

  17. E. V. Stolnikova, N. D. Ananyeva, and O. V. Chernova, “The microbial biomass and its activity and structure in the soils of old forests in the European Russia,” Eur. Soil Sci. 44(4), 437–452 (2011).

    Article  Google Scholar 

  18. T. A. Chalaya, Author’s Abstract Cand. Sci. (Biol) Diss. (Moscow, 2012) [in Russian].

    Google Scholar 

  19. M. Sh. Shaimukhametov, N. A. Titova, L. S. Travnikova, and E. M. Labenets, “Application of the physical methods of fractionation to characterize soil organic matter,” Pochvovedenie, No. 8, 131–141 (1984).

    Google Scholar 

  20. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10, 215–221 (1978).

    Article  Google Scholar 

  21. T.-H. Anderson and K. H. Domsch, “Ratios of microbial biomass to total organic carbon in arable soils,” Soil Biol. Biochem. 21, 471–479 (1989).

    Article  Google Scholar 

  22. M. Corvasce, A. Zsolnay, V. D’Orazio, R. Lopez, and M. Miano, “Characterization of water extractable organic matter in a deep soil profile,” Chemosphere 62, 1583–1590 (2006).

    Article  Google Scholar 

  23. L. B. Guo and R. M. Gifford, “Soil carbon stocks and land use change: a meta analysis,” Glob. Change Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  24. H. Insam and K. H. Domsch, “Relation between soil organic carbon and microbial biomass on chronose-quences of reclamation sites,” Microb. Ecol. 15, 177–188 (1988).

    Article  Google Scholar 

  25. O. Kalinina, O. Chertov, A. V. Dolgikh, S. V. Goryachkin, D. I. Lyuri, S. Vormstein, L. Giani, “Self-restoration of post-agrogenic Albeluvisols: soil development, carbon stocks and dynamics of carbon pools,” Geoderma 207–208, 221–233 (2013).

    Article  Google Scholar 

  26. J. Laganiere, D. A. Angers, and D. Pare, “Carbon accumulation in agricultural soils after afforestation: a meta-analysis,” Glob. Change Biol. 16, 439–453 (2010).

    Article  Google Scholar 

  27. J. Leifeld and I. Kogel-Knabner, “Soil organic matter fractions as early indicators for carbon stock changes under different land-use?,” Geoderma 124, 143–155 (2005).

    Article  Google Scholar 

  28. K. I. Paul, P. J. Polglase, J. G. Nyakuengama, and P. K. Khanna, “Change in soil carbon following afforestation,” Forest. Managem. 168, 241–257 (2002).

    Article  Google Scholar 

  29. Ch. Poeplau, A. Don, L. Vesterdal, J. Leifeld, B. van Wesemael, J. Schumacher, A. Gensior, “Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach,” Glob. Change Biol. 17, 2415–2427 (2011).

    Article  Google Scholar 

  30. Ch. Poeplau and A. Don, “Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe,” Geoderma 192, 189–201 (2013).

    Article  Google Scholar 

  31. W. M. Post and K. C. Kwon, “Soil carbon sequestration and land use change: processes and potential,” Glob. Change Biol. 6, 317–328 (2000).

    Article  Google Scholar 

  32. J. Six, P. Callewaert, S. Lenders, S. De Gryze, S. J. Morris, E. G. Gregorich, E. A. Paul, K. Paustian, “Measuring and understanding carbon storage in afforested soils by physical fractionation,” Soil Sci. Soc. Am. J. 66, 1981–1987 (2002).

    Article  Google Scholar 

  33. M. von Lützow, I. Kogel-Knabner, K. Ekschmit, H. Flessa, G. Guggenberger, E. Matzner, B. Marschner, “Review: SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Erokhova.

Additional information

Original Russian Text © A.A. Erokhova, M.I. Makarov, E.G. Morgun, I.M. Ryzhova, 2014, published in Pochvovedenie, 2014, No. 11, pp. 1308–1314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erokhova, A.A., Makarov, M.I., Morgun, E.G. et al. Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils. Eurasian Soil Sc. 47, 1100–1106 (2014). https://doi.org/10.1134/S1064229314110040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229314110040

Keywords

Navigation