Skip to main content
Log in

Carbon Stocks and Carbon Protection Capacity of Soddy-Podzolic Soils in Natural and Agricultural Ecosystems of the Cis-Ural Region

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The amount of stabilized and protected from decomposition soil organic matter characterizes the carbon protection capacity (CPC) of soil. Experimental data on the accumulation and loss of organic carbon in soddy-podzolic soils (Eutric Albic Retisols (Abruptic, Loamic, Cutanic)) in agrocenoses and background natural cenoses of the Cis-Ural region are presented. The greatest decrease in the Corg stock has been found in the soil of permanent clean fallow: the rate of carbon loss in the layer of 0–20 cm in the first seven years reaches 0.04% C/ yr or 1.0 t C/(ha yr). Among arable soils, the soil under the perennial leguminous crop—the oriental goat’s rue (Galéga orientalis)—is characterized by the maximum content and stocks of organic carbon. Over 30 years of permanent cultivation of this crop, carbon stock in the layer of 0–20 cm has increased by 5.4 t/ha, and the thickness of the humus-accumulative soil horizon (A1) has increased up to 36 cm; in the virgin soil of the grass–forb meadow it reaches 22 cm. Natural soils are in equilibrium, the Corg content under mixed forest in the layer of 3–20 cm is 2.69 ± 0.02%; under the grass–forb meadow (0–20 cm), 1.25 ± 0.03%; carbon stocks are 41.2 and 31.2 t C/ha, respectively. The average value of the CPC in the layer of 0–20 cm in studied soils varies from 26.1 to 32.9 g C/kg soil and virtually does not depend on the soil management. Significant factors influencing the content of organic carbon in the soil are the quantity and qualitative composition of the biomass entering the soil of agrocenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. V. Grigorchuk (Ed.), Agroclimatic Resources of Perm Oblast, (Gidrometeoizdat, Leningrad, 1979) [in Russian].

    Google Scholar 

  2. A. Yu. Ivanov, N. D. Durmanov (Eds.) A Fight for Climate: Carbon Farming as a Stake of Russia. Expert Report (Izd. Vyssh. Shk. Ekonomiki, Moscow, 2021) [in Russian].

    Google Scholar 

  3. L. V. Boitsova, S. V. Neprimerova, and E. G. Zinchuk, “The Impact of different fertilization systems on the organic carbon sequestration in soddy gley soil,” Probl. Agrokhim. Ekol., No. 4, 15–20 (2019).

  4. State of the Environment and Environmental Protection in Perm region in 2020, https://priroda.permkrai.ru/ u-pload/iblock/ca6/doklad_oospk_2020_11.07v1zm.pdf.

  5. O. Z. Eremchenko, I. E. Shestakov, and N. V. Moskvina, Soils and Technogenic Surface Formations in Urbanized Areas of the Perm Kama Region (Perm Gos. Nats. Issled. Univ., Perm, 2016) [in Russian].

    Google Scholar 

  6. G. A. Zavarzin and V. N. Kudeyarov, “Soil as the Main Source of Carbon Dioxide and the organic carbon pool in Russia,” Vestn. Ross. Akad. Nauk 76 (1), 14–29 (2006).

    Google Scholar 

  7. N. E. Zav’yalova, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2007).

  8. N. E. Zav’yalova, V. A. Voloshin, and I. V. Kazakova, “Potential longevity of the leguminous oriental goat’s rue and its application for fertility preservation in soddy-podzolic soil of Cis-Urals,” Dokl. Ross. Akad. Sel’skokhoz. Nauk, N No. 3, 31–34 (2015).

    Google Scholar 

  9. S. V. Zonn and L. O. Karpachevskii, “Problems of forest soil science and modern methods of the assessment of forest-growing capacity of soils,” Pochvovedenie, No. 9, 6–16 (1987).

    Google Scholar 

  10. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, et al., Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  11. A. N. Knishatkina and O. A. Timoshin, “The impact of oriental goat’s rue on soil fertility,” Zemledelie, No. 2, 12–13 (2007).

    Google Scholar 

  12. B. M. Kogut, V. M. Semenov, Z. S. Artem’eva, and N. N. Danchenko, “Dehumification and carbon sequestration by soil,” Agrokhimiya, No. 5, 3–13 (2021). https://doi.org/10.31857/S0002188121050070

    Article  Google Scholar 

  13. V. N. Kudeyarov, “Soil-biogeochemical aspects of arable farming in the Russian Federation,” Eurasian Soil Sci. 52 (1), 94–104 (2019). https://doi.org/10.1134/S1064229319010095

    Article  Google Scholar 

  14. V. N. Kudeyarov, “Current state of the carbon budget and the capacity of Russian soils for carbon sequestration,” Eurasian Soil Sci. 48 (9), 923–933 (2015). https://doi.org/10.1134/S1064229315090070

    Article  Google Scholar 

  15. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, et al., Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian]

    Google Scholar 

  16. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. S. Tulina, “Mineralization of organic matter and the carbon sequestration capacity of zonal soils,” Eurasian Soil Sci. 41 (7), 717–730 (2008). https://doi.org/10.1134/S1064229308070065

    Article  Google Scholar 

  17. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  18. V. M. Semenov and T. N. Lebedeva, “Carbon problem in sustainable farming: agrochemical aspects,” Agrokhimiya, No. 11, 3–12 (2015).

    Google Scholar 

  19. M. S. Sokolov, A. P. Glinushkin, Yu. Ya. Spiridonov, E. Yu. Toropova, O. D. Filipchuk, “Technological specificity of soil-protective conservation farming (in development of the FAO concept),” Agrokhimiya, No. 4, 3–20 (2019).

    Google Scholar 

  20. V. G. Sychev and A. N. Naliukhin, “Climate change and carbon neutrality,” Plodorodie, No. 5, 3–7 (2021).

    Google Scholar 

  21. V. G. Sychev and A. N. Naliukhin, “Study of carbon and nitrogen fluxes in long-term field experiments of the geographic network with the aim to decrease emission of greenhouse gases and increase deposition of carbon dioxide in agrocenoses,” Plodorodie, No. 6, 38–41 (2021).

    Google Scholar 

  22. V. G. Sychev, A. N. Naliukhin, L. K. Shevtsova, O. V. Rukhovich, and M. V. Belichenko ''Influence of fertilizer systems on soil organic carbon content and crop yield: results of long-term field experiments at the geographical network of research stations in Russia,'' Eurasian Soil Sci. 53 (12), 1794–1808 (2020). https://doi.org/10.1134/S1064229320120133

    Article  Google Scholar 

  23. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–221 (1978).

    Article  Google Scholar 

  24. M. A. Glazovskaya, P. P. Krechetov, and O. V. Chernitsova, “General regularities of the accumulation and replenishment of the reserves of biophilous elements in soddy-podzolic soils of mixed coniferous-broad-leaved forests,” Eurasian Soil Sci. 37 (12), 1269–1278 (2004).

    Google Scholar 

  25. B. T. Christensen, “Physical fractionation of soil and organic matter in primary particle size and density separates,” Adv. Soil Sci 20 (1), 90 (1992).

    Google Scholar 

  26. H. Chung, J. H. Grove, and J. Six, “Indications for soil carbon saturation in a temperate agroecosystem,” Soil Sci. Soc. Am. J. 72 (4), 1132–1139 (2008).https://doi.org/10.2136/sssaj2007.0265

    Article  Google Scholar 

  27. H. Chung, K. J. Ngo, A. Plante, and J. Six, “Evidence for carbon saturation in a highly structured and organic-matter-rich soil,” Soil Sci. Soc. Am. J. 74 (1), 130–138 (2010).https://doi.org/10.2136/sssaj2009.0097

    Article  Google Scholar 

  28. J. Hassink, “The capacity of soils to preserve organic C and N by their association with clay and silt particles,” Plant Soil 191, 77–87 (1997).https://doi.org/10.1023/A:1004213929699

    Article  Google Scholar 

  29. B. M. Kogut and V. M. Semenov, “Estimation of Soil Saturation with Organic Carbon,” Byull. Pochv. Inst. im. V.V. Dokuchaeva 102, 103–124 (2020).https://doi.org/10.19047/0136-1694-2020-102-103-124

    Article  Google Scholar 

  30. M. Körschens, “Soil – humus – climate. Practically relevant results of 79 long-term field experiments,” Vortrag Zum 2. Symp. Wahrnehmung und Bewertung von Bodenin der Gesellschaft Am 12 Oktober 2018 Im UFZ (Leipzig, 2018).

  31. I. N. Kurganova, V. J. Lopes de Gerenyu, J. Six, Y. Kuzyakov, “Carbon cost of collective farming collapse in Russia,” Glob. Change Biol. 20 (3), 938–947 (2014).https://doi.org/10.1111/gcb.12379

    Article  Google Scholar 

  32. Y. Kuzyakov, “Sources of CO2 efflux from soil and review of partitioning methods,” Soil Biol. Biochem. 38, 425–448 (2006).https://doi.org/10.1016/j.soilbio.2005.08.020

    Article  Google Scholar 

  33. W. H. Schlesinger and J. A. Andrews, “Soil respiration and the global carbon cycle,” Biogeochemistry 48, 7–20 (2000).https://doi.org/10.1023/A:1006247623877

    Article  Google Scholar 

  34. J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization mechanisms of soil organic matter: implications for C-saturation of soils,” Plant Soil 241, 155–176 (2002).https://doi.org/10.1023/A:1016125726789

    Article  Google Scholar 

  35. M. Wiesmeier, R. Hübner, and P. Spörlein, U. Geuß, E. Hangen, A. Reischl, B. Schilling, M. von Lützow, I. Kögel-Knabner, “Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation,” Glob. Change Biol. 20 (2), 653–665 (2014).https://doi.org/10.1111/gcb.12384

    Article  Google Scholar 

  36. W. H. Schlesinger, J. A. Andrews, “Soil respiration and global carbon cycle,” Biogeochemistry 48, 7–20 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Zavyalova.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavyalova, N.E. Carbon Stocks and Carbon Protection Capacity of Soddy-Podzolic Soils in Natural and Agricultural Ecosystems of the Cis-Ural Region. Eurasian Soil Sc. 55, 1140–1147 (2022). https://doi.org/10.1134/S1064229322080166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322080166

Keywords:

Navigation