Skip to main content
Log in

Admittance of MIS Structures Based on MBE Hg1 – xCdxTe (x = 0.21–0.23) in a Wide Temperature Range

  • Articles from the Russian Journal Prikladnaya Fizika
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Features of the electrical properties of n(p)-Hg1–xCdxTe (x = 0.21–0.23) with Al2O3 or SiO2/Si3N4 dielectrics are considered. The HgCdTe films were grown by means of molecular beam epitaxy on GaAs(013) and Si(013) substrates. The possibility of determining the basic parameters of MIS structures based on n(p)-Hg1–xCdxTe (x = 0.21–0.23) with and without a varizonal layer from admittance measurements in a wide range of temperatures and frequencies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Detectors, 2nd. Ed. (CRC, Taylor & Francis Group, New York, 2011).

    Google Scholar 

  2. Yu. G. Sidorov, S. A. Dvoretskii, V. S. Varavin, et al., Semiconductors 35, 1045 (2001).

    Article  Google Scholar 

  3. P. Zhang, Z.-H. Ye, C.-H. Sun, Y. Y. Chen, T.-N. Zhang, X. Chen, C. Lin, R.-J. Ding, and L. He, J. Electron. Mater. 45, 4716 (2016).

    Article  Google Scholar 

  4. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).

    Google Scholar 

  5. M. W. Goodwin, M. A. Kinch, and R. J. Koestner, J. Vac. Sci. Technol. A 7, 523 (1989).

    Article  Google Scholar 

  6. M. W. Goodwin, M. A. Kinch, and R. J. Koestner, J. Vac. Sci. Technol. A 8, 1226 (1990).

    Article  Google Scholar 

  7. A. V. Voitsekhovskii, S. N. Nesmelov, A. P. Kokhanenko, et al., Russ. Phys. J. 48, 143 (2005).

    Article  Google Scholar 

  8. V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE 6636, 663617 (2007).

    Article  Google Scholar 

  9. V. V. Vasil’ev and Yu. P. Mashukov, Semiconductors 41, 37 (2007).

    Article  Google Scholar 

  10. S. Y. An, J. S. Kim, D. W. Seo, and S. H. Suh, J. Electron. Mater. 31, 683 (2002).

    Article  Google Scholar 

  11. J. P. Rosbeck and M. E. Harper, J. Appl. Phys. 62, 1717 (1987).

    Article  Google Scholar 

  12. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Opto-Electron. Rev. 22, 236 (2014).

    Article  Google Scholar 

  13. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J. 58, 540 (2015).

    Article  Google Scholar 

  14. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, I. D. Burlakov, and A. Yu. Selyakov, Prikl. Fiz., No. 5, 80 (2011).

    Google Scholar 

  15. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Thin Solid Films 522, 261 (2012).

    Article  Google Scholar 

  16. S. M. Sze and K. Ng Kwok, Physics of Semiconductor Devices, 3rd Ed. (Wiley, New York, 2007).

    Google Scholar 

  17. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, J. Electron. Mater. 45, 881 (2016).

    Article  Google Scholar 

  18. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J. 59, 284 (2016).

    Article  Google Scholar 

  19. D. R. Frankl, Solid-State Electron. 2, 71 (1961).

    Article  Google Scholar 

  20. R. Van Overstraeten, G. Declerck, and G. Broux, J. Electrochem. Soc. 120, 1785 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Original Russian Text © A.V. Voitsekhovskii, N.A. Kulchitsky, S.N. Nesmelov, S.M. Dzyadukh, 2017, published in Uspekhi Prikladnoi Fiziki, 2017, Vol. 5, No. 1, pp. 54–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Kulchitsky, N.A., Nesmelov, S.N. et al. Admittance of MIS Structures Based on MBE Hg1 – xCdxTe (x = 0.21–0.23) in a Wide Temperature Range. J. Commun. Technol. Electron. 63, 1112–1118 (2018). https://doi.org/10.1134/S1064226918090231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918090231

Keywords

Navigation