Skip to main content
Log in

Analysis of dielectric properties of blood and development of a resonator method for noninvasive measuring of glucose content in blood

  • Applications of Radiotechnology and Electronics in Biology and Medicine
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A resonator method for measuring the dielectric properties of strongly absorbing materials, which enables one to detect small variations in the permittivity, is developed. By this method, the permittivity of fresh (without anticoagulants) venous and capillary blood and its variation in the process of clotting with time is determined. The dependence of the reflection coefficient of the resonator at the resonance frequencies of the permittivity of venous blood in the course of reading of the glycaemic profile is studied, and a certain correlation between the variation in the glucose content in blood and these quantities is found. The dependence of the reflection coefficient of the resonator loaded to the human hand in the process of reading of the glycaemic profile is studied, and it is shown that the correlation between the glucose content in human blood and the reflection coefficient of the resonator is observed only in the initial section of the increase in the glucose content in blood after glucose intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zhang, X. Zhang, J. Brown, et al., Diabetes Res. Clinical Pract. 87, 293 (2010).

    Article  Google Scholar 

  2. N. A. Bazaev and S. V. Selishchev, Med. Tekh. 41 (1), 40 (2007).

    Google Scholar 

  3. C. F. So, K. S. Choi, T. K. Wong, and J. W. Chung, Med. Devices (Auckland, NZ) 5, 45 (2012).

    Google Scholar 

  4. S. K. Vashist, Anal. Chim. Acta 750, 16 (2012).

    Article  Google Scholar 

  5. I. V. Lebedev, Microwave Technology and Devices (Vysshaya Shkola, Moscow, 1970), Vol. 1 [in Russian].

    Google Scholar 

  6. A. S. Zav’yalov and G. E. Dunaevskii, Measuring Material Parameters at Microwave Frequencies (Tomsk. Univ., Tomsk, 1985) [in Russian].

    Google Scholar 

  7. E. L. Ginston, Microwave Measurements (McGraw-Hill, New York, 1957; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  8. H. F. Cook, British J. Appl. Phys. 3 (8), 249 (1952).

    Article  Google Scholar 

  9. T. Meissner and F. J. Wentz, IEEE Trans. Geosci. Remote Sens. 42, 1836 (2004).

    Article  Google Scholar 

  10. H. Beving and G. Eriksson, Eur. J. Surg., Suppl.: Acta Chir. 574, 87 (1994).

    Google Scholar 

  11. J. Alvarado, M. Sosa, L. Morales, et al., AIP Conf. Proc. 682, 217 (2003).

    Article  Google Scholar 

  12. J. M. Alison and R. J. Sheppard, Phys. Med. Biol. 38, 971 (1993).

    Article  Google Scholar 

  13. K. Ismail, D. K. Ghodgaonkar, M. S. Said, et al. http://www.ursi.org/Proceedings/ProcGA05/pdf/ K01.5(0870).pdf.

  14. H. F. Cook, Nature 168 (4267), 247 (1951).

    Article  Google Scholar 

  15. http://medlec.org/lek-109250.html.

  16. V. V. Meriakri, E. E. Chigrai, D. Kim, et al., Meas. Sci. Technol. 18, 977 (2007).

    Article  Google Scholar 

  17. V. V. Meriakri, MRS Proc. 631 (2000).

    Google Scholar 

  18. Y. Hayashi, N. Shinyashiki, and S. Yagihara, Biopolymers 63 (1), 21 (2002).

    Article  Google Scholar 

  19. B. M. Garin, V. V. Meriakri, E. E. Chigrai, et al., PIERS Online 7, 555 (2011).

    Google Scholar 

  20. Y. Feldman, A. A. Puzenko, P. B. Ishai, and E. Levy, Recent Advances in Broadband Dielectric Spectroscopy, Ed. by Yu. P. Kalmykov (Doordrecht, Springer, 2013).

  21. Y. Feldman, P. B. Ishai, A. Puzenko, and A. Greenbaum, in Proc. 10th Int. Conf. on Electromagnetic Wave Interaction with Water and Moist Substances. (ISEMA- 2013.) (MFPA Bauhaus Univ., Weimar, 2013), p. 15.

    Google Scholar 

  22. Y. Feldman, A. Puzenko, P. Ben Ishai, et al., AIP Conf. Proc. 1518, 344 (2013).

    Article  Google Scholar 

  23. V. V. Meriakri, E. E. Chigryai, I. P. Nikitin, et al., Elektromagn. Volny Elektron. Sist. 10 (4), 31 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Parkhomenko.

Additional information

Original Russian Text © M.P. Parkhomenko, S.V. Savel’ev, S.V. von Gratovski, 2017, published in Radiotekhnika i Elektronika, 2017, Vol. 62, No. 3, pp. 276–291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomenko, M.P., Savel’ev, S.V. & von Gratovski, S.V. Analysis of dielectric properties of blood and development of a resonator method for noninvasive measuring of glucose content in blood. J. Commun. Technol. Electron. 62, 267–281 (2017). https://doi.org/10.1134/S1064226917030159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226917030159

Navigation