Skip to main content
Log in

Frequency-Coded Control of the Conductance of Memristors Based on Nanoscale Layers of LiNbO3 and (Co40Fe40B20)x(LiNbO3)100 – x Composite in Trained Spiking Neural Networks

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The memristive properties of Cu/nanocomposite/ LiNbO3/Cu capacitor structures based on a (Co40Fe40B20)x(LiNbO3)100 – x nanocomposite and an amorphous LiNbO3 interlayer with thicknesses of about 40 and 20 nm, respectively, have been studied. It was found that these structures have relatively low resistive switching voltages (~2 V) and are capable of withstanding more than 104 cyclic switchings due to the formation of conducting channels in LiNbO3 in fixed regions specified by the position of percolation chains of CoFe nanograins in the nanocomposite. It is shown that the conductance of Cu/nanocomposite/LiNbO3/Cu memristors can vary according to local biosimilar rules. A simple neural network based on such memristors, trained by feeding a frequency-coded noise signal to its inputs, was implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Berggren, Q. Xia, K. K. Likharev, D. B. Strukov, H. Jiang, T. Mikolajick, D. Querlioz, M. Salinga, J. R. Erickson, S. Pi, F. Xiong, P. Lin, C. Li, Y. Chen, S. Xiong, et al., Nanotechnology 32, 012002 (2021). https://doi.org/10.1088/1361-6528/aba70f

    Article  ADS  Google Scholar 

  2. S. Shchanikov, A. Zuev, I. Bordanov, S. Danilin, V. Lukoyanov, D. Korolev, A. Belov, Y. Pigareva, A. Gladkov, A. Pimashkin, A. Mikhaylov, V. Kazantsev, and A. Serb, Chaos Solit. Fract. 142, 110504 (2021). https://doi.org/10.1016/j.chaos.2020.110504

    Article  Google Scholar 

  3. V. V. Rylkov, A. V. Emelyanov, S. N. Nikolaev, K. E. Nikiruy, A. V. Sitnikov, E. A. Fadeev, V. A. Demin, and A. B. Granovsky, J. Exp. Theor. Phys. 131, 160 (2020). https://doi.org/10.1134/S1063776120070109

    Article  ADS  Google Scholar 

  4. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, Nature (London, U.K.) 521, 61 (2015). https://doi.org/10.1038/nature14441

    Article  ADS  Google Scholar 

  5. C. Li, Z. Wang, M. Rao, D. Belkin, W. Song, H. Jiang, P. Yan, Y. Li, P. Lin, M. Hu, N. Ge, J. P. Strachan, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, Nat. Mach. Intell. 1, 49 (2019). https://doi.org/10.1038/s42256-018-0001-4

    Article  Google Scholar 

  6. J. Moon, W. Ma, J. H. Shin, F. Cai, C. Du, S. H. Lee, and W. D. Lu, Nat. Electron. 2, 480 (2019). https://doi.org/10.1038/s41928-019-0313-3

    Article  Google Scholar 

  7. K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, A. V. Sitnikov, A. A. Minnekhanov, V. V. Rylkov, P. K. Kashkarov, and M. V. Kovalchuk, AIP Adv. 9, 065116 (2019). https://doi.org/10.1063/1.5111083

    Article  ADS  Google Scholar 

  8. A. N. Matsukatova, A. V. Emelyanov, A. A. Minnekhanov, A. A. Nesmelov, A. Yu. Vdovichenko, S. N. Chvalun, V. V. Rylkov, P. A. Forsh, V. A. Demin, P. K. Kashkarov, and M. V. Kovalchuk, Appl. Phys. Lett. 117, 243501 (2020). https://doi.org/10.1063/5.0030069

    Article  ADS  Google Scholar 

  9. J. H. Ryu and S. Kim, Chaos Solit. Fract. 140, 110236 (2020). https://doi.org/10.1016/j.chaos.2020.110236

    Article  Google Scholar 

  10. D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, IEEE Trans. Nanotechnol. 12, 288 (2013). https://doi.org/10.1109/TNANO.2013.2250995

    Article  ADS  Google Scholar 

  11. S. Brivio, D. Conti, M. V. Nair, J. Frascaroli, E. Covi, C. Ricciardi, G. Indiveri, and S. Spiga, Nanotechnology 30, 015102 (2019). https://doi.org/10.1088/1361-6528/aae81c

    Article  ADS  Google Scholar 

  12. V. A. Demin, D. V. Nekhaev, I. A. Surazhevsky, K. E. Nikiruy, A. V. Emelyanov, S. N. Nikolaev, V. V. Rylkov, and M. V. Kovalchuk, Neural Networks 134, 64 (2021). https://doi.org/10.1016/j.neunet.2020.11.005

    Article  Google Scholar 

  13. A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, and T. Podromakis, Nat. Commun. 7, 12611 (2016). https://doi.org/10.1038/ncomms12611

    Article  ADS  Google Scholar 

  14. A. V. Emelyanov, K. E. Nikiruy, A. V. Serenko, A. V. Sitnikov, M. Yu. Presnyakov, R. B. Rybka, A. G. Sboev, V. V. Rylkov, P. K. Kashkarov, M. V. Kovalchuk, and V. A. Demin, Nanotechnology 31, 045201 (2020). https://doi.org/10.1088/1361-6528/ab4a6d

    Article  ADS  Google Scholar 

  15. Q. Xia and J. J. Yang, Nat. Mater. 18, 309 (2019). https://doi.org/10.1038/s41563-019-0291-x

    Article  ADS  Google Scholar 

  16. M. Prezioso, M. R. Mahmoodi, F. M. Bayat, H. Nili, H. Kim, A. Vincent, and D. B. Strukov, Nat. Commun. 9, 5311 (2018). https://doi.org/10.1038/s41467-018-07757-y

    Article  ADS  Google Scholar 

  17. S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, and J. Kim, Nat. Mater. 17, 335 (2018). https://doi.org/10.1038/s41563-017-0001-5

    Article  ADS  Google Scholar 

  18. M. N. Martyshov, A. V. Emelyanov, V. A. Demin, K. E. Nikiruy, A. A. Minnekhanov, S. N. Nikolaev, A. N. Taldenkov, A. V. Ovcharov, M. Yu. Presnyakov, A. V. Sitnikov, A. L. Vasiliev, P. A. Forsh, A. B. Granovsky, P. K. Kashkarov, M. V. Kovalchuk, and V. V. Rylkov, Phys. Rev. Appl. 14, 034016 (2020). https://doi.org/10.1103/PhysRevApplied.14.034016

    Article  ADS  Google Scholar 

  19. W. Banerjee, Q. Liu, and H. Hwang, J. Appl. Phys. 127, 051101 (2020). https://doi.org/10.1063/1.5136264

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the Resource Center for Electrophysical Methods of National Research Center “Kurchatov Institute”.

Funding

This work was supported in part by the Russian Science Foundation (grant no. 20-79-10185) in the study of the electrophysical and structural properties of memristive samples and by Russian Federation Presidential Grant MK-2203.2021.1.2 in the part of training a spiking neural network with noise signals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Il’yasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’yasov, A.I., Emel’yanov, A.V., Nikirui, K.E. et al. Frequency-Coded Control of the Conductance of Memristors Based on Nanoscale Layers of LiNbO3 and (Co40Fe40B20)x(LiNbO3)100 – x Composite in Trained Spiking Neural Networks. Tech. Phys. Lett. 47, 656–660 (2021). https://doi.org/10.1134/S1063785021070075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021070075

Keywords:

Navigation