Skip to main content
Log in

On the thermal conductivity of nanofluids

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The dependence of the effective thermal conductivity λ of nanofluids on the properties of dispersed nanoparticles has been studied by the molecular dynamics method. It is established that the thermal conductivity of a nanofluid always exceeds that of the carrier medium, the excess depending on the volume fraction of nanoparticles, their masses, and sizes. An increase in the nanoparticle mass at a constant size leads to a more pronounced increase in λ than does the growth in size at a constant mass, which implies that the density of dispersed nanoparticles is an important factor that determines the thermal conductivity of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Keblinski, J. A. Eastman, and D. G. Cahill, Mater. Today 8(6), 36 (2005).

    Article  Google Scholar 

  2. P. Keblinski, R. Prasher, and J. Eapen, J. Nanopart. Res. 10, 1089 (2008).

    Article  Google Scholar 

  3. S. A. Putnam, D. G. Cahill, and P. V. Braun, J. Appl. Phys. 99, 084 308 (2006).

    Article  Google Scholar 

  4. D. N. Kumar, H. E. Patel, V. R. Rajeev Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Phys. Rev. Lett. 93, 144 301 (2004).

    Article  Google Scholar 

  5. V. Ya. Rudyak and S. L. Krasnolutskii, Dokl. Akad. Nauk 392, 484 (2003) [Dokl. Phys. 48, 583 (2003)].

    Google Scholar 

  6. V. Ya. Rudyak, A. A. Belkin, and V. V. Egorov, Zh. Tekh. Fiz. 79(8), 18 (2009) [Tech. Phys. 54, 1102 (2009)].

    Google Scholar 

  7. J. A. Eastman, U. S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. DiMelfi, Invited Paper to Intern. Symp. on Metastable, Mechanically Alloyed, and Nanocrystalline Materials (December 7–12, 1998, Wollongong, Australia).

  8. H. T. Zhu, C. Y. Zhang, Y. M. Tang, and J. X. Wang, J. Phys. Chem. C 111, 1646 (2007).

    Article  Google Scholar 

  9. V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, and E. I. Kauppinen, Dokl. Akad. Nauk 386, 624 (2002) [Dokl. Phys. 47, 758 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Original Russian Text © V.Ya. Rudyak, A.A. Belkin, E.A. Tomilina, 2010, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 36, No. 14, pp. 49–54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudyak, V.Y., Belkin, A.A. & Tomilina, E.A. On the thermal conductivity of nanofluids. Tech. Phys. Lett. 36, 660–662 (2010). https://doi.org/10.1134/S1063785010070229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785010070229

Keywords

Navigation