Skip to main content
Log in

Probing the Frequency Dispersion of Magnetic Permeability of a Sample during Dynamic Interaction with a Magnetized Probe

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The forces acting on a magnetic particle during nonrelativistic motion parallel to the surface of a homogeneous medium with a frequency dispersion of the magnetic permeability are considered. General expressions are obtained for the normal (attractive) and lateral (stopping) forces acting on a small dipole particle and an extended probe. It is shown that for an arbitrary orientation of the vector of the dipole magnetic moment of the particle, along with the force of attraction and the drag force, there also appears a velocity-dependent lateral force perpendicular to the velocity vector. The possibility of using these results to study the frequency-dependent magnetic permeability of nanostructured materials and films in the dynamic scanning mode of magnetic force microscopy (MCM) with magnetic probes is discussed. Numerical estimates are given for the magnitude of the expected forces, friction coefficients, and changes in the quality factor of the MFM oscillators in the case of frequency dispersion of the magnetic permeability of the relaxation type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. N. Lagarkov and K. N. Rozanov, J. Magn. Magn. Mater. 321, 2082 (2009). https://doi.org/10.1016/j.jmmm.2008.08.099

    Article  ADS  Google Scholar 

  2. X. G. Chen, Y. Ye, and J. P. Cheng, J. Inorg. Mater. 26, 449 (2011). https://doi.org/10.3724/sp.j.1077.2011.00449

    Article  Google Scholar 

  3. F. M. Idris, M. Hashim, Z. Abbas, I. Ismail, R. Nazlan, and I. R. Ibrahim, J. Magn. Magn. Mater. 405, 197 (2016). https://doi.org/10.1016/J.JMMM.2015.12.070

    Article  ADS  Google Scholar 

  4. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, and H. Wu, J. Mater. Sci.: Mater. Electron. 29, 17122 (2018). https://doi.org/10.1007/s10854-018-9909-z

    Article  Google Scholar 

  5. S. Y. Bobrovskii, V. A. Garanov, A. S. Naboko, A. V. Osipov, and K. N. Rozanov, EPJ Web Conf. 185, 02002 (2018). https://doi.org/10.1051/epjconf/201818502002

  6. S. S. Maklakov, A. N. Lagarkov, S. A. Maklakov, Y. A. Adamovich, D. A. Petrov, K. N. Rozanov, I. A. Ryzhikov, A. Y. Zarubina, K. V. Pokholok, and D. S. Filimonov, J. Alloys Compd. 706, 267 (2017). https://doi.org/10.1051/epjconf/201818502002

    Article  Google Scholar 

  7. T. Nakamura, T. Tsutaoka, and K. Hatakeyama, J. Magn. Magn. Mater. 138, 319 (1994). https://doi.org/10.1016/0304-8853(94)90054-X

    Article  ADS  Google Scholar 

  8. K. A. Rozanov, Doctoral Dissertation in Mathematics and Physics (Inst. Theor. Appl. Electrodyn., Russ. Acad. Sci., Moscow, 2018). https://istina.msu.ru/dissertations/106198705

  9. J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Zuger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995). https://doi.org/10.1103/RevModPhys.67.249

    Article  ADS  Google Scholar 

  10. M. R. Koblischka and U. Hartmann, Ultramicroscopy 97, 103 (2003). https://doi.org/10.1109/TMAG.2009.2021985

    Article  Google Scholar 

  11. D. Rugar, R. Budakian, and H. J. Mamin, Nature 403, 329 (2004). https://doi.org/10.1038/nature02658

    Article  ADS  Google Scholar 

  12. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, Proc. Nat. Acad. Sci. U.S.A. 106, 1313 (2009).

    Article  ADS  Google Scholar 

  13. J. D. Jackson, Classical Electrodynamics (Wiley, New York–London, 1962).

    MATH  Google Scholar 

  14. G. V. Dedkov and A. A. Kyasov, Phys. Low-Dimens. Struct. 1/2, 1 (2003).

    Google Scholar 

  15. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1965).

    Google Scholar 

  16. D. A. Vinnik, V. E. Zhivulin, D. P. Sherstyuk, A. Yu. Starikov, P. A. Zezyulina, S. A. Gudkova, D. A. Zherebtsov, K. N. Rozanov, S. V. Trukhanov, K. A. Astapovich, S. B. Sombra, D. Zhou, R. B. Jotania, C. Singh, and A. V. Trukhanov, J. Mater. Sci. C 9, 5425 (2021). https://doi.org/10.1039/d0tc05692h

    Article  Google Scholar 

  17. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Dedkov.

Ethics declarations

The author declare that he has no conflicts of interest.

Appendices

APPENDIX

Appendix A

In accordance with the general method for solving differential equations of type (11), (12), it is necessary to find the sum of solutions of the corresponding homogeneous equations and partial solutions of inhomogeneous ones. In the domains z > 0 and z ≤ 0, the solutions of the homogeneous equation (d2/dz2k2)y(z) = 0 are y(z) = C1exp(–kz) and y(z) = C2exp(kz), with C1 and C2 being arbitrary constants. A particular solution of the inhomogeneous equation (d2/dz2k2)y(z) = f(z) (where f(z) is a known function) is found by convolving Green’s function G(z, z') with f(z): y(z) = \(\int_{ - \infty }^{ + \infty } G \)(z, z')f(z')dz'. Green’s function G(z, z') is a solution to the equation

$$({{d}^{2}}{\text{/}}d{{z}^{2}} - {{k}^{2}})G(z,z{\kern 1pt} ') = \delta (z - z{\kern 1pt} ')$$
(A1)

in the region –∞ < z < ∞ and reads

$$G(z,z{\kern 1pt} ') = - \frac{1}{{2k}}\exp ( - k{\text{|}}z - z{\kern 1pt} '{\text{|}}).$$
(A2)

Particular solutions of equations (11), (12), obviously, are found by simply multiplying (А2) by the corresponding coefficients on the right side of these equations. Taking this into account, the solution to (11) and (12) is

$${{A}_{x}} = \left\{ \begin{gathered} {{A}_{1}}\exp ( - kz) + i\frac{{{{{(2\pi )}}^{2}}}}{k}{{k}_{y}}{{m}_{z}}\delta (\omega - {{k}_{x}}V)\exp ( - k{\text{|}}z - {{z}_{0}}{\text{|}}),\quad z > 0 \hfill \\ {{B}_{1}}\exp (kz),\quad z \leqslant 0, \hfill \\ \end{gathered} \right.$$
(A3)
$${{A}_{y}} = \left\{ \begin{gathered} {{A}_{2}}\exp ( - kz) - i\frac{{{{{(2\pi )}}^{2}}}}{k}{{k}_{x}}{{m}_{z}}\delta (\omega - {{k}_{x}}V)\exp ( - k{\text{|}}z - {{z}_{0}}{\text{|}}),\quad z > 0 \hfill \\ {{B}_{2}}\exp (kz),\quad z \leqslant 0. \hfill \\ \end{gathered} \right.$$
(A4)

In expressions (A3), (A4), for simplicity, the indices k, ω of the Fourier components Ax, Ay of the vector potential are omitted. It should be noted that Fourier components Ax, Ay of the induced vector potential in the region z > 0 in (A3) and (A4) correspond to terms proportional to A1, A2. Since in the case under consideration we have Az = 0, the gauge condition divA = 0 leads to the relations ikxA1 + ikyA2 = 0 and ikxB1 + ikyB2 = 0, whence

$${{A}_{2}} = - \frac{{{{k}_{x}}}}{{{{k}_{y}}}}{{A}_{1}},\quad {{B}_{2}} = - \frac{{{{k}_{x}}}}{{{{k}_{y}}}}{{B}_{1}}.$$
(A5)

Taking into account the relation H = curlA, the conditions for the continuity of components Hx, Hy of the magnetic field strength and the induction Bz at the boundary z = 0 are reduced to the requirement of the continuity of the quantities ∂Ay/∂z, ∂Ax/∂z, and μ(∂Ay/∂x – ∂Ay/∂y). Taking into account these relations and (A3)–(A5), we obtain Eqs. (13), (14) for the Fourier-transforms of the induced vector potential. The coefficients B1, B2 in (A3) and (A4), respectively, are given by

$${{B}_{1}} = - {{A}_{1}} + i\frac{{{{{(2\pi )}}^{2}}}}{k}{{k}_{y}}{{m}_{z}}\exp ( - k{{z}_{0}}),$$
(A6)
$${{B}_{2}} = {{A}_{1}}\frac{{{{k}_{x}}}}{{{{k}_{y}}}} - i\frac{{{{{(2\pi )}}^{2}}}}{k}{{k}_{x}}{{m}_{z}}\exp ( - k{{z}_{0}}),$$
(A7)

but they are not required in what follows, since only vector potential in the region z > 0 is used to find force (1). When calculating the contributions to the vector potential from the components of the magnetic moment mx, my of the particle, we note that the derivatives δ'(zz'), which are present in (7), (8), can be replaced by kδ(zz'), after which the equations for the components of the vector potential will be completely similar to equations (11), (12). As a result, for mx ≠ 0, my = mz = 0 and Akω, x = 0, the corresponding Fourier-transforms of the vector potential read

$$\begin{gathered} {{A}_{{{\mathbf{k}}\omega ,y}}}(z) = {{(2\pi )}^{2}}{{m}_{x}}\left[ {\frac{{\mu - 1}}{{\mu + 1}}\exp ( - k(z + {{z}_{0}}))} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}} + \,\,\exp ( - k\left| {z - {{z}_{0}}} \right|)} \right]\delta (\omega - {{k}_{x}}V), \\ \end{gathered} $$
(A8)
$$\begin{gathered} {{A}_{{{\mathbf{k}}\omega ,z}}}(z) = i\frac{{{{{(2\pi )}}^{2}}}}{k}{{k}_{y}}{{m}_{x}}\left[ {\frac{{\mu - 1}}{{\mu + 1}}\exp ( - k(z + {{z}_{0}}))} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}} - \,\,\exp ( - k\left| {z - {{z}_{0}}} \right|)} \right]\delta (\omega - {{k}_{x}}V). \\ \end{gathered} $$
(A9)

At my ≠ 0, mx = mz = 0 and Akω, y = 0, respectively,

$$\begin{gathered} {{A}_{{{\mathbf{k}}\omega ,x}}}(z) = - \,{{(2\pi )}^{2}}{{m}_{y}}\left[ {\frac{{\mu - 1}}{{\mu + 1}}\exp ( - k(z + {{z}_{0}}))} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}} + \,\,\exp ( - k\left| {z - {{z}_{0}}} \right|)} \right]\delta (\omega - {{k}_{x}}V), \\ \end{gathered} $$
(A10)
$$\begin{gathered} {{A}_{{{\mathbf{k}}\omega ,z}}}(z) = - i\frac{{{{{(2\pi )}}^{2}}}}{k}{{k}_{y}}{{m}_{x}}\left[ {\frac{{\mu - 1}}{{\mu + 1}}\exp ( - k(z + {{z}_{0}}))} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}} - \,\,\exp ( - k\left| {z - {{z}_{0}}} \right|)} \right]\delta (\omega - {{k}_{x}}V). \\ \end{gathered} $$
(A11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedkov, G.V. Probing the Frequency Dispersion of Magnetic Permeability of a Sample during Dynamic Interaction with a Magnetized Probe. Tech. Phys. 67, 243–252 (2022). https://doi.org/10.1134/S1063784222050012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222050012

Keywords:

Navigation