Skip to main content
Log in

Contact Properties of Gradient Materials with a High Gradient Index

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We study the adhesive contact between an rigid parabolic indenter and a half-space the elastic modulus of which is a power function of depth. A diagram is presented that shows the areas corresponding to a stable solution of the contact problem for high gradient exponents. It is shown that the adhesive contact between materials with a high gradient index is not destroyed when they are removed to any distance from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. k = 0 corresponds to a homogeneous medium with elastic modulus E = E0.

  2. For some parameter values k and ν, function β(k, ν) can be an imaginary value, but the resulting function hN(k, ν) always takes real values.

  3. Vertical stripes on the diagram in Fig. 2 are associated with a change in the sign of the factors cos(kπ/2) and sin(βπ/2) in the experession for hN(k, ν) (4).

REFERENCES

  1. Functionally Graded Materials: Design, Processing and Applications, Ed. by Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford (Springer, Boston, MA, 1999). https://doi.org/10.1007/978-1-4615-5301-4

    Book  Google Scholar 

  2. A. Gupta and T. Mohammad, Prog. Aerosp. Sci. 79, 1 (2015). https://doi.org/10.1016/j.paerosci.2015.07.001

    Article  Google Scholar 

  3. F. Jin, X. Guo, and W. Zhang, J. Appl. Mech. 80, 061024 (2013). https://doi.org/10.1115/1.4023980

  4. I. Argatov and A. Iantchenko, Q. J. Mech. Appl. Math. 72, 197 (2019). https://doi.org/10.1093/qjmam/hbz002

    Article  Google Scholar 

  5. J. Aboudi, M.-J. Pindera, and S. M. Arnold, Composites, Part B 30, 777 (1999). https://doi.org/10.1016/S1359-8368(99)00053-0

    Article  Google Scholar 

  6. E. Willert, Facta Univ., Ser.: Mech. Eng. 16, 9 (2018). https://doi.org/10.22190/FUME171121003W

    Article  Google Scholar 

  7. I. A. Lyashenko, V. N. Borysiuk, and V. L. Popov, Facta Univ., Ser.: Mech. Eng. 18, 245 (2020). https://doi.org/10.22190/FUME200129020L

    Article  Google Scholar 

  8. M. Hill, R. Carpenter, G. Paulino, Z. Munir, and J. Gibeling, Fracture testing of a layered functionally graded material, in Fracture Resistance Testing of Monolithic and Composite Brittle Materials, Ed. by J. Salem, G. Quinn, and M. Jenkins (ASTM Int., West Conshohocken, PA, 2002), pp. 169–184. https://doi.org/10.1520/STP10478S

    Book  Google Scholar 

  9. C.-E. Rousseau, V. B. Chalivendra, H. V. Tippur, and A. Shukla, Exp. Mech. 7, 845 (2010). https://doi.org/10.1007/s11340-010-9381-z

    Article  Google Scholar 

  10. V. L. Popov, R. Pohrt, and Q. Li, Friction 5, 308 (2017). https://doi.org/10.1007/s40544-017-0177-3

    Article  Google Scholar 

  11. E. Martinez-Paneda and R. Gallego, Int. J. Mech. Mater. Des. 11, 405 (2015). https://doi.org/10.1007/s10999-014-9265-y

    Article  Google Scholar 

  12. M. Scaraggi and D. Comingio, Int. J. Solids Struct. 125, 276 (2017). https://doi.org/10.1016/j.ijsolstr.2017.06.008

    Article  Google Scholar 

  13. J. R. Booker, N. P. Balaam, and E. H. Davis, Int. J. Numer. Anal. Methods Geomech. 9, 353 (1985). https://doi.org/10.1002/nag.1610090405

    Article  Google Scholar 

  14. J. R. Booker, N. P. Balaam, and E. H. Davis, Int. J. Numer. Anal. Methods Geomech. 9, 369 (1985). https://doi.org/10.1002/nag.1610090406

    Article  Google Scholar 

  15. A. E. Giannakopoulos and S. Suresh, Int. J. Solids Struct. 34, 2357 (1997). https://doi.org/10.1016/S0020-7683(96)00171-0

    Article  Google Scholar 

  16. M. Hess and V. L. Popov, Facta Univ., Ser.: Mech. Eng. 14, 251 (2016). https://doi.org/10.22190/FUME1603251H

    Article  Google Scholar 

  17. M. Hess, Int. J. Eng. Sci. 104, 20 (2016). https://doi.org/10.1016/j.ijengsci.2016.04.009

    Article  Google Scholar 

  18. V. L. Popov, Phys. Mesomech. 21, 76 (2018). https://doi.org/10.1134/S1029959918010101

    Article  Google Scholar 

  19. I. A. Lyashenko and V. L. Popov, Tech. Phys. 65 (10), 1695 (2020). https://doi.org/10.1134/S1063784220100126

    Article  Google Scholar 

  20. Q. Li and V. L. Popov, Comput. Mech. 61, 319 (2018). https://doi.org/10.1007/s00466-017-1461-9

    Article  MathSciNet  Google Scholar 

  21. D. Lee, J. R. Barber, and M. D. Thouless, Int. J. Eng. Sci. 47, 1274 (2009). https://doi.org/10.1016/j.ijengsci.2008.08.005

    Article  Google Scholar 

  22. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988).

    Book  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity, 3rd ed. (Butterworth–Heinemann, 1986). ISBN 978-0-7506-2633-0

    MATH  Google Scholar 

  24. R. Lakes, Science 235, 1038 (1987). https://doi.org/10.1126/science.235.4792.1038

    Article  ADS  Google Scholar 

  25. Handbook of Adhesion Technology, Ed. by L. F. M. da Silva, A. Öchsner, and R. D. Adams, 2nd ed. (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-319-55411-2

    Book  Google Scholar 

  26. K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Soc. London, Ser. A 324, 301 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  ADS  Google Scholar 

  27. K. L. Johnson, Proc. R. Soc. London, Ser. A 453, 163 (1997). https://doi.org/10.1098/rspa.1997.0010

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Deutsche Forschungsgemeinschaft, project PO 810-55-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lyashenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashenko, I.A., Popov, V.L. Contact Properties of Gradient Materials with a High Gradient Index. Tech. Phys. 67, 28–33 (2022). https://doi.org/10.1134/S1063784222010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222010108

Keywords:

Navigation