Skip to main content
Log in

Experimental Fracture Mechanics of Functionally Graded Materials: An Overview of Optical Investigations

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The experimental efforts towards understanding the fracture behavior of continuously graded Functionally Graded Materials (FGMs) using full-field optical methods are reviewed. Both quasi-static and dynamic fracture investigations involving mode-I and -II conditions are presented. FGM configurations with crack planes perpendicular to, parallel to, and inclined to the direction of compositional gradation are discussed. Different strategies adopted by various investigators to develop polymer-based FGM systems for experimental mechanics studies are also described in this overview. Major theoretical developments that have predated and paralleled the experimental studies have been presented as well. Finally, the paper notes a few potential new directions where further contributions are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hirano T, Yamada T, Teraki J, Nino M, Kumakawa A (1988) A study on a functionally graded material design system for a thrust chamber. In: Proceedings 16th international symposium on space technology and science, Sapporo, Japan

  2. Jin ZH, Batra RC (1996) Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids 44(8):1221–1235

    Article  Google Scholar 

  3. Sasaki M, Hirai T (1991) Fabrication and properties of functionally gradient materials. Nippon Seramikkusu Kyōkai Gakujutsu Rombunsh—J Ceram Soc Jpn 99(10):1002–1013

    Google Scholar 

  4. Bishop A, Lin CY, Navaratnam M, Rawlings RD, Mcshane HB (1993) A functionally gradient material produced by a power metallurgical process. J Mater Sci Lett 12(19):1516–1518

    Google Scholar 

  5. Chu J, Ishibashi H, Hayashi K, Takebe H, Morinaga K (1993) Slip casting of continuous functionally gradient material. Nippon Seramikkusu Kyōkai Gakujutsu Rombunsh—J Ceram Soc Jpn 101(7):841–844

    Google Scholar 

  6. Sampath S, Gansert R, Herman H (1995) Plasma-spray forming ceramics and layered composites. J Miner Met Mater Soc 47(10):30–33

    Google Scholar 

  7. Parameswaran V, Shukla A (1998) Dynamic fracture of a functionally gradient material having discrete property variation. J Mater Sci 33(13):3303–3311

    Article  Google Scholar 

  8. Butcher RJ, Rousseau CE, Tippur HV (1998) A functionally graded particulate composite: preparation, measurements and failure analysis. Acta Mater 47(1):259–268

    Article  Google Scholar 

  9. Parameswaran V, Shukla A (2000) Processing and characterization of a model functionally gradient material. J Mater Sci 35(1):21–29

    Article  Google Scholar 

  10. Atkinson C, List RD (1978) Steady-state crack-propagation into media with spatially varying elastic properties . Int J Eng Sci 16(10):717–730

    Article  MATH  Google Scholar 

  11. Delale F, Erdogan F (1983) The crack problem for a non-homogeneous plane. J Appl Mech Trans ASME 50(3):609–614

    Article  MATH  Google Scholar 

  12. Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech Trans ASME 24:109–114

    MATH  Google Scholar 

  13. Eischen JW (1987) Fracture of nonhomogeneous materials. Int J Fract 34(1):3–22

    Google Scholar 

  14. Eftis J, Subramonian N, Liebowitz H (1977) Crack border stress and displacement equations revisited. Eng Fract Mech 9(1):189–210

    Article  Google Scholar 

  15. Parameswaran V, Shukla A (2002) Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials. J Appl Mech Trans ASME 69(3):240–243

    Article  MATH  MathSciNet  Google Scholar 

  16. Chalivendra VB, Shukla A, Parameswaran V (2003) Quasi-static stress fields for a crack inclined to the property gradation in functionally graded materials. Acta Mech 162(1–4):167–184

    MATH  Google Scholar 

  17. Jain N, Rousseau CE, Shukla A (2004) Crack-tip stress fields in functionally graded materials with linearly varying properties. Theor Appl Fract Mech 42(2):155–170

    Article  Google Scholar 

  18. Chalivendra VB (2008) Mode-I crack-tip stress fields for inhomogeneous orthotropic medium. Mech Mater 40(4–5): 293–301

    Article  Google Scholar 

  19. Chalivendra VB (2009) Mixed-mode crack-tip stress fields for orthotropic functionally graded materials. Acta Mech 204(1–2):51–60

    Article  MATH  Google Scholar 

  20. Krenk S (1979) Elastic-constants of plane orthotropic elasticity. J Compos Mater 13:108–116

    Article  Google Scholar 

  21. Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech Trans ASME 6(5):A49–A53

    Google Scholar 

  22. Erdogan F, Wu BH (1997) The surface crack problem for a plate with functionally graded properties. J Appl Mech Trans ASME 64(3):449–456

    Article  MATH  Google Scholar 

  23. Parameswaran V, Shukla A (1999) Crack-tip stress fields for dynamic fracture in functionally gradient materials. Mech Mater 31(9):579–596

    Article  Google Scholar 

  24. Chalivendra VB, Shukla A, Parameswaran V (2002) Dynamic out of plane displacement fields for an inclined crack in graded materials. J Elast 69(1–3):99–119

    Article  MATH  MathSciNet  Google Scholar 

  25. Shukla A, Jain N (2004) Dynamic damage growth in particle reinforced graded materials. Int J Impact Eng 30(7):777–803

    Article  Google Scholar 

  26. Lee KH (2004) Characteristics of a crack propagating along the gradient in functionally gradient materials. Int J Solids Struct 41(11–12):2879–2898

    Article  MATH  Google Scholar 

  27. Jain N, Shukla A (2004) Displacements, strains and stresses associated with propagating cracks in materials with continuously varying properties. Acta Mech 171(1–2):75–103

    MATH  Google Scholar 

  28. Chalivendra VB, Shukla A (2005) Transient elastodynamic crack growth in functionally graded materials. J Appl Mech Trans ASME 72(2):237–248

    Article  MATH  Google Scholar 

  29. Chalivendra VB (2007) Asymptotic analysis of transient curved crack in functionally graded materials. Int J Solids Struct 44(2):465–479

    Article  MATH  Google Scholar 

  30. Lee KH, Chalivendra VB, Shukla A (2008) Dynamic crack-tip stress and displacement fields under thermomechanical loading in functionally graded materials. J Appl Mech Trans ASME 75(5):1–7

    Google Scholar 

  31. Erdogan F (1985) The crack problem for bonded nonhomogeneous materials under antiplane shear loading. J Appl Mech Trans ASME 52(4):823–828

    Article  MATH  MathSciNet  Google Scholar 

  32. Erdogan F, Kaya AC, Joseph PF (1991) The mode-III crack problem in bonded materials with a nonhomogeneous interfacial zone. J Appl Mech Trans ASME 58(2):419–427

    Article  MATH  Google Scholar 

  33. Ozturk M, Erdogan F (1995) An axisymmetrical crack in bonded materials with a nonhomogeneous interfacial zone under torsion. J Appl Mech Trans ASME 62(1):116–125

    Article  MATH  Google Scholar 

  34. Chan YS, Paulino GH, Fannjiang AC (2001) The crack problem for nonhomogeneous materials under antiplane shear loading—a displacement based formulation. Int J Solids Struct 38(17):2989–3005

    Article  MATH  Google Scholar 

  35. Wang BL, Mai YW, Noda N (2004) Fracture mechanics analysis models for functionally graded materials with arbitrarily distributed properties (modes II and III problems). Int J Fract 126(4):307–320

    Article  MATH  Google Scholar 

  36. Paulino GH, Fannjiang AC, Chan YS (2003) Gradient elasticity theory for mode III fracture in functionally graded materials—part I: crack perpendicular to the material gradation. J Appl Mech Trans ASME 70(4):531–542

    Article  MATH  Google Scholar 

  37. Chan Y-S, Paulino GH, Fannjiang AC (2008) Gradient elasticity theory for mode III fracture in functionally graded materials—part II: crack parallel to the material gradation. J Appl Mech Trans ASME 75(6):061015-1–061015-11

    Google Scholar 

  38. Kubair DV, Geubelle PH, Lambros J (2005) Asymptotic analysis of a mode III stationary crack in a ductile functionally graded material. J Appl Mech Trans ASME 72(4):461–467

    Article  MATH  Google Scholar 

  39. Tippur HV, Krishnaswamy S, Rosakis AJ (1991) Optical mapping of crack tip deformations using the methods of transmission and reflection coherent gradient sensing—a study of crack tip K-dominance. Int J Fract 52(2):91–117

    Google Scholar 

  40. Rousseau CE, Tippur HV (2000) Compositionally graded materials with cracks normal to the elastic gradient. Acta Mech 48(16):4021–4033

    Google Scholar 

  41. Gu P, Asaro RJ (1997) Crack deflection in functionally graded materials. Int J Solids Struct 34(24):3085–3098

    Article  MATH  Google Scholar 

  42. Abanto-Bueno J, Lambros J (2006) An experimental study of mixed mode crack initiation and growth in functionally graded materials. Exp Mech 46(2):179–196

    Article  Google Scholar 

  43. Lambros J, Santare MH, Li H, Sapna GH (1999) A novel technique for the fabrication of laboratory scale model functionally graded materials. Exp Mech 39(3):184–190

    Article  Google Scholar 

  44. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress-analysis. Opt Eng 21(3):427–431

    Google Scholar 

  45. Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244

    Article  Google Scholar 

  46. Oral A, Lambros J, Anlas G (2008) Crack initiation in functionally graded materials under mixed mode loading: experiments and simulations. J Appl Mech Trans ASME 75(5):051110

    Article  Google Scholar 

  47. Li H, Lambros J, Cheeseman BA, Santare MH (2000) Experimental investigation of the quasi-static fracture of functionally graded materials. Int J Solids Struct 37(27):3715–3732

    Article  MATH  Google Scholar 

  48. Honein T, Herrmann G (1997) Conservation laws in nonhomogeneous plane elastostatics. J Mech Phys Solids 45(5):789–805

    Article  MATH  MathSciNet  Google Scholar 

  49. Rousseau CE, Tippur HV (2002) Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: cracks parallel to elastic gradient. Int J Fract 114(1):87–111

    Article  Google Scholar 

  50. Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69(14-16):1695–1711

    Article  Google Scholar 

  51. Abanto-Bueno J, Lambros J (2006) Parameters controlling fracture resistance in functionally graded materials under mode I loading. Int J Solids Struct 43(13):3920–3939

    Article  Google Scholar 

  52. Rousseau C-E (2006) Critical examination of the use of coherent gradient sensing in measuring fracture parameters in functionally graded materials. J Compos Mater 40(19):1763–1782

    Article  Google Scholar 

  53. Rousseau CE, Tippur HV (2001) Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis. Mech Mater 33(7):403–421

    Article  Google Scholar 

  54. El-Hadek MA, Tippur HV (2003) Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams. Int J Solids Struct 40(8):1885–1906

    Article  Google Scholar 

  55. Kirugulige MS, Kitey R, Tippur H (2005) Dynamic fracture behavior of model sandwich structures with functionally graded core: a feasibility study. Compos Sci Technol 65(7–8):1052–1068

    Article  Google Scholar 

  56. Kirugulige MS, Tippur HV (2006) Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Exp Mech 46(2):269–281

    Article  Google Scholar 

  57. Kirugulige M, Tippur HV (2008) Mixed-mode dynamic crack growth in a functionally graded particulate composite: experimental measurements and finite element simulations. J Appl Mech—Trans ASME 75(5):051102.1–051102.14

    Google Scholar 

  58. Jain N, Shukla A (2006) Mixed mode dynamic fracture in particulate reinforced functionally graded materials. Exp Mech 46(2):137–154

    Article  Google Scholar 

  59. Shukla A, Jain N, Chona R (2007) A review of dynamic fracture studies in functionally graded materials.Strain 43(2):76–95

    Article  Google Scholar 

Download references

Acknowledgements

HVT would like to gratefully acknowledge the support of a grant from the U.S. Army Research Office (Grant No. W911NF-04-10257). CER acknowledges the support of the U.S. Army Research Office ARO Solid Mechanics Program (46449-EG) and from the University of Rhode Island DHS Center of Excellence in Explosives. AS wishes to acknowledge the financial support of the Air Force of Scientific Research under grant no. FA 95500910639 and the National Science Foundation under grant no. CMS 0244330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Tippur.

Additional information

This is the 5th in a series of featured review articles to celebrate the 50th anniversary of Experimental Mechanics. These articles serve to touch on both areas of mechanics where the journal has contributed extensively in the past and emergent areas for the future.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousseau, C.E., Chalivendra, V.B., Tippur, H.V. et al. Experimental Fracture Mechanics of Functionally Graded Materials: An Overview of Optical Investigations. Exp Mech 50, 845–865 (2010). https://doi.org/10.1007/s11340-010-9381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9381-z

Keywords

Navigation