Skip to main content
Log in

Magnetic and Radio-Absorbing Properties of Polycrystalline Li0.33Fe2.29Zn0.21Mn0.17O4 Spinel Ferrite

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Polycrystalline spinel ferrites with a composition of Li0.33Fe2.29Zn0.21Mn0.17O4 have been synthesized using the ceramic technology at sintering temperatures of 950, 1000, 1050, and 1100°C. The magnetic hysteresis loops and permeability of the objects of study are analyzed in magnetic fields from –400 to +400 A/m. The behaviors of the complex permittivity and complex permeability and the reflectance on a metal plate are investigated in the frequency range of 0.01–7.0 GHz. It is established that the optimal range of sintering temperatures for the synthesized ferrites is from 1050 to 1100°C. It is shown that the Li0.33Fe2.29Zn0.21Mn0.17O4 spinel ferrite intensely absorbs electromagnetic radiation in the frequency range of 0.05–7.0 GHz. Possibilities of practical application of the results obtained are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. I. Rabkin, S. A. Soskin, and B. S. Epstein, Ferrites. Structure, Properties, Production Technology (Energiya, Leningrad, 1968) [in Russian].

    Google Scholar 

  2. L. M. Letyuk, V. G. Kostishin, and A. V. Gonchar, Technology of Ferrite Materials of Magnetoelectronics (MISIS, Moscow, 2005) [in Russian].

    Google Scholar 

  3. E. N. Lysenko, S. A. Ghyngazov, A. P. Surzhikov, S. A. Nikolaeva, and V. A. Vlasov, Ceram. Int. 45 (2B), 2736 (2019). https://doi.org/10.1016/j.ceramint.2018.09.061

    Article  Google Scholar 

  4. M. Maisnam, S. Phanjoubam, H. N. K. Sarma, O. Thakur, R. Laishram, and C. Prakash, Int. J. Mod. Phys. B 17 (21), 3881 (2003). https://doi.org/10.1142/S0217979203021873

    Article  ADS  Google Scholar 

  5. A. N. Yusoff and M. H. Abdullah, J. Magn. Magn. Mater. 269 (2), 271 (2004). https://doi.org/10.1016/S0304-8853(03)00617-6

    Article  ADS  Google Scholar 

  6. T. Nakamura, T. Miyamoto, and Y. Yamada, J. Magn. Magn. Mater. 256 (1–3), 340 (2003). https://doi.org/10.1016/S0304-8853(02)00698-4

  7. D.-Y. Kim, Y.-H. Yoon, K.-Y. Jo, G.-B. Jung, and Ch-Ch. An, J. Electromagn. Eng. Sci. 16 (3), 150 (2016). https://doi.org/10.5515/JKIEES.2016.16.3.150

    Article  Google Scholar 

  8. N. M. Pletnev, Yu. K. Nepochatov, N. S. Popova, and M. A. Peshkov, Physico-Chemical Aspects of Obtaining Materials from Natural and Man-Made Raw Materials, Ed. by S. A. Shakhov (Sib. Transp. Univ., Novosibirsk, 2014), p. 29 [in Russian].

    Google Scholar 

  9. N. M. Pletnev and Yu. K. Nepochatov, Ogneup. Tekh. Keram., Nos. 4–5, 40 (2015).

  10. Yu. K. Nepochatov, Candidate’s Dissertation in Technical Sciences (Sib. Transp. Univ., Tomsk, 2014).

  11. V. G. Kostishin, R. M. Vergazov, V. G. Andreev, S. B. Bibikov, S. V. Podgornaya, and A. T. Morchenko, Russ. Microelectron. 40, 574 (2011). https://doi.org/10.1134/S1063739711080117

    Article  Google Scholar 

  12. V. G. Kostishin, R. M. Vergazov, V. G. Andreev, S.  B.  Bibikov, A. T. Morchenko, I. I. Kaneva, and V. R. Maiorov, Russ. Microelectron. 41, 469 (2012). https://doi.org/10.1134/S1063739712080094

    Article  Google Scholar 

  13. V. G. Kostishin, R. M. Vergazov, S. B. Menshova, and I. M. Isaev, Ross. Tekhnol. Zh. 8 (6), 87 (2020). https://doi.org/10.32362/2500-316X-2020-8-6-87-108

    Article  Google Scholar 

  14. V. G. Kostishin, R. M. Vergazov, S. B. Men’shova, I. M. Isaev, and A. V. Timofeev, Zavod. Lab. Diagn. Mater. 87 (1), 30 (2021). https://doi.org/10.26896/1028-6861-2021-87-1-30-34

    Article  Google Scholar 

  15. P. Baba, G. Argentina, W. Courtney, G. Dionne, and D. Temme, IEEE Trans. Magn. 8 (1), 83 (1972). https://doi.org/10.1109/TMAG.1972.1067269

    Article  ADS  Google Scholar 

  16. Y. Guo, J. Zhu, and H. Li, Ceram. Int. 47 (7A), 9111 (2021). https://doi.org/10.1016/j.ceramint.2020.12.034

    Article  Google Scholar 

  17. M. Arana, P. G. Bercoff, and S. E. Jacobo, Procedia Mater. Sci. 1, 620 (2012). https://doi.org/10.1016/j.mspro.2012.06.084

    Article  Google Scholar 

  18. Y. Yang, H. Zhang, J. Li, F. Xu, G. Gan, and D. Wen, Ceram. Int. 44 (9), 10545 (2018). https://doi.org/10.1016/j.ceramint.2018.03.076

    Article  Google Scholar 

  19. H. Su, Q. Luo, Y. Li, H. Zhang, and X. Tang, J. Magn. Magn. Mater. 469, 419 (2019). https://doi.org/10.1016/j.jmmm.2018.09.009

    Article  ADS  Google Scholar 

  20. F. Xie, L. Jia, F. Xu, J. Li, G. Gan, and H. Zhang, Ceram. Int. 44 (11), 13122 (2018). https://doi.org/10.1016/j.ceramint.2018.04.134

    Article  Google Scholar 

  21. Q. Luo, H. Su, X. Tang, Z. Xu, Y. Li, and Y. Jing, Ceram. Int. 44 (13), 16005 (2018). https://doi.org/10.1016/j.ceramint.2018.06.035

    Article  Google Scholar 

  22. G. Gan, D. Zhang, Q. Zhang, G. Wang, X. Huang, Y. Yang, Y. Rao, J. Li, F. Xu, X. Wang, R. T. Chen, and H. Zhang, Ceram. Int. 45 (9), 12035 (2019). https://doi.org/10.1016/j.ceramint.2019.03.098

    Article  Google Scholar 

  23. Z. Noreen, I. Ahmad, F. Siddiqui, A. Ziya, T. Abbas, and H. Bokhari, Ceram. Int. 43 (14), 10784 (2017). https://doi.org/10.1016/j.ceramint.2017.05.092

    Article  Google Scholar 

  24. V. Manikandan, F. Tudorache, L. Petrila, R. S. Mane, V. Kuncser, B. Vasile, D. Morgan, S. Vigneselvan, and A. Mirzaei, J. Magn. Magn. Mater. 474, 563 (2019). https://doi.org/10.1016/j.jmmm.2018.11.072

    Article  ADS  Google Scholar 

  25. M. N. Akhtar and M. A. Khan, J. Magn. Magn. Mater. 460, 268 (2018). https://doi.org/10.1016/j.jmmm.2018.03.069

    Article  ADS  Google Scholar 

  26. T. Tsuoka, J. Appl. Phys. 93 (5), 2789 (2003). https://doi.org/10.1063/1.1542651

    Article  ADS  Google Scholar 

  27. V. A. Bokov, Physics of Magnets (Ioffe Inst., St. Petersburg, 2002) [in Russian].

    Google Scholar 

  28. C. Clausell, A. Barba, L. Nuño, and J. C. Jarque, Ceram. Int. 42 (3), 4256 (2016). https://doi.org/10.1016/j.ceramint.2015.11.101

    Article  Google Scholar 

  29. Md. D. Rahaman, K. K. Nahar, M. N. I. Khan, and A. K. M. Akther Hossain, Phys. B 481, 156 (2016). https://doi.org/10.1016/j.physb.2015.11.008

  30. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC Press, New York, 1996).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, agreement no. 19-19-00694 of May 6, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kostishin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, I.M., Kostishin, V.G., Korovushkin, V.V. et al. Magnetic and Radio-Absorbing Properties of Polycrystalline Li0.33Fe2.29Zn0.21Mn0.17O4 Spinel Ferrite. Tech. Phys. 66, 1216–1220 (2021). https://doi.org/10.1134/S1063784221090085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221090085

Navigation