Skip to main content
Log in

Analysis of Electron Emission from a Single Silicon Cathode to Quasi-Vacuum (Air) Using Atomic Force Microscopy

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Atomic force microscopy is employed in the experimental study of specific features of the field emission of electrons from a single silicon needle-type cathode to quasi-vacuum (air). Noncontact regime of the atomic force microscopy is used to measure the IV characteristics of a single cathode with nanometer-scale tip radius at distances of 10 and 20 nm between the cathode tip and the measurement probe. Electric field distributions are simulated for both surface of the tip of a single cathode and tip surfaces of single cathodes in an array, and the results are used to theoretically estimate electric field enhancement versus cathode–probe distance. It is shown that the enhancement factor calculated from the experimental IV characteristics in the Fowler–Nordheim coordinates is greater than the result of theoretical calculations by several orders of magnitude. This circumstance indicates that additional quantum dimensional effects that play an important role in the generation of the electron emission current in the nanoscale gap must be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Seshan, in Handbook of Thin Film Deposition (Elsevier, 2018), pp. 19–41. https://doi.org/10.1016/B978-0-12-812311-9.00002-5

  2. S. Nirantar, T. Ahmed, M. Bhaskaran, J.-W. Han, S.  Walia, and S. Sriram, Adv. Intell. Syst. 1 (4), 1900039 (2019). https://doi.org/10.1002/aisy.201900039

    Article  Google Scholar 

  3. J.-W. Han, D.-I. Moon, and M. Meyyappan, Nano Lett. 17, 2146 (2017). https://doi.org/10.1021/acs.nanolett.6b04363

    Article  ADS  Google Scholar 

  4. J.-W. Han, M.-L. Seol, D.-L. Moon, G. Hunter, and M. Meyyappan, Nat. Electron. 2, 405 (2019). https://doi.org/10.1038/s41928-019-0289-z

    Article  Google Scholar 

  5. J.-W. Han, J. S. Oh, and M. Meyyappan, IEEE Trans. Nanotechnol. 13, 464 (2014). https://doi.org/10.1109/TNANO.2014.2310774

    Article  ADS  Google Scholar 

  6. S. Nirantar, T. Ahmed, G. Ren, P. Gutruf, C. Xu, M. Bhaskaran, S. Walia, and S. Sriram, Nano Lett. 18, 7478 (2018). https://doi.org/10.1021/acs.nanolett.8b02849

    Article  ADS  Google Scholar 

  7. J. Xu, Q. Wang, Z. Tao, Y. Zhai, C. Guangdian, Z. Qi, and X. Zhang, IEEE Trans. Electron Devices 64, 2364 (2017). https://doi.org/10.1109/TED.2017.2673853

    Article  ADS  Google Scholar 

  8. J. Xu, H. Hu, W. Yang, C. Li, Y. Shi, Y. Shi, Q. Wang, and X. Zhang, Nanotechnology 31, 065202 (2020). https://doi.org/10.1088/1361-6528/ab51cb

    Article  ADS  Google Scholar 

  9. M. Liu, W. Fu, Y. Yang, T. Li, and Y. Wang, Appl. Phys. Lett. 112, 093104 (2018). https://doi.org/10.1063/1.4996370

    Article  ADS  Google Scholar 

  10. W.-T. Chang, H.-J. Hsu, and P.-H. Pao, Micromachines 10 (12), 858 (2019). https://doi.org/10.3390/mi10120858

    Article  Google Scholar 

  11. V. Chatterjee, R. Harniman, P. W. May, and P. K. Barhai, Appl. Phys. Lett. 104, 171907 (2014). https://doi.org/10.1063/1.4875059

    Article  ADS  Google Scholar 

  12. R. V. Konakova, O. B. Okhrimenko, A. M. Svetlichnyi, O. A. Ageev, E. Yu. Volkov, A. S. Kolomiytsev, I. L. Jityaev, and O. B. Spiridonov, Semiconductors 49 (9), 1242 (2015). https://doi.org/10.1134/S1063782615090146

    Article  ADS  Google Scholar 

  13. N. A. Djuzhev, G. D. Demin, N. A. Filippov, I. D. Evsikov, P. Yu. Glagolev, M. A. Makhiboroda, N. I. Chkhalo, N. N. Salashchenko, S. V. Filippov, A. G. Kolosko, E. O. Popov, and V. A. Bespalov, Tech. Phys. 64 (12), 1742 (2019). https://doi.org/10.1134/S1063784219120053

    Article  Google Scholar 

  14. S. M. Jung, J. Hahn, H. Y. Jung, and J. S. Suh, Nano Lett. 6, 1569 (2006). https://doi.org/10.1021/nl060437q

    Article  ADS  Google Scholar 

  15. N. Zhu and J. Chen, Micromachines 8, 162 (2017). https://doi.org/10.3390/mi8050162

    Article  Google Scholar 

  16. S. A. Guerrera and A. I. Akinwande, Nanotechnology 27, 295302 (2016). https://doi.org/10.1088/0957-4484/27/29/295302

    Article  Google Scholar 

  17. G. D. Demin, N. A. Djuzhev, N. A. Filippov, P. Yu. Glagolev, I. D. Evsikov, and N. N. Patyukov, J. Vac. Sci. Technol., B 37, 022903 (2019). https://doi.org/10.1116/1.5068688

    Article  Google Scholar 

  18. L. Qian, Y. Wang, L. Liu, and S. Fan, J. Vac. Sci. Technol., B 28, 562 (2010). https://doi.org/10.1116/1.3372333

    Article  Google Scholar 

  19. R. G. Forbes, C. J. Edgcombe, and U. Valdré, Ultramicroscopy 95, 57 (2003). https://doi.org/10.1016/s0304-3991(02)00297-8

    Article  Google Scholar 

  20. E. O. Popov, A. G. Kolosko, M. A. Chumak, and S. V. Filippov, Tech. Phys. 64 (10), 1530 (2019). https://doi.org/10.1134/S1063784219100177

    Article  Google Scholar 

  21. COMSOL Multiphysics. V. 5.5. COMSOL AB (Stockholm, Sweden), https://www.comsol.com.

  22. H. D. Nguyen, J. S. Kang, M. Li, and Y. Hu, Nanoscale 11, 3129 (2019). https://doi.org/10.1039/c8nr07912a

    Article  Google Scholar 

  23. Y. Huang, Z. Deng, W. Wang, C. Liang, J. She, S. Deng, and N. Xu, Sci. Rep. 5, 10631 (2015). https://doi.org/10.1038/srep10631

    Article  ADS  Google Scholar 

  24. J. A. Driscoll, S. Bubin, W. R. French, and K. Varga, Nanotechnology 22, 285702 (2011). https://doi.org/10.1088/0957-4484/22/28/285702

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the RF Ministry of Education and Science for technical support provided by the MIET Core facilities center “MEMS and electronic components.”

Funding

This work was supported by the RF Presidential grant no. 075-15-2019-1139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Evsikov.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evsikov, I.D., Mit’ko, S.V., Glagolev, P.Y. et al. Analysis of Electron Emission from a Single Silicon Cathode to Quasi-Vacuum (Air) Using Atomic Force Microscopy. Tech. Phys. 65, 1846–1852 (2020). https://doi.org/10.1134/S1063784220110067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110067

Navigation