Skip to main content
Log in

Effective Medium Approximations for the Description of Multicomponent Composites

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We compared several generalizations of the Bruggeman effective medium approach with the use of elliptical cells. Namely, a “uniaxial” anisotropic approximation and two isotropic models with averaging over chaotic orientations and random conductivities of particles were compared, which make it possible to consider multicomponent composites with various filler particles (for instance, carbon nanotubes and graphenes). The expressions for the corresponding percolation thresholds were derived. It was shown that all considered approximations result in the same “additive rule” of the inverse percolation thresholds, which was previously found for a particular case of two-component fillers with the use of estimates of an excluded volume. The correlation of the aforementioned “additive rule” with frequently observed synergic effects was discussed, the description of which requires taking into account near correlations and is beyond purview of the effective medium theories. For the model problem with parameters corresponding to carbon nanotubes in a polymer matrix, the considered models led to qualitatively similar results and resulted in an effective conductivity within the Hashin−Shtrikman bounds. Using the known two-scale averaging technique, taking into account the possibility of agglomeration of the filler particles, we showed that, in the framework of the considered models, agglomeration can lead to both an increase and decrease in the percolation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. According to this definition, A ≥ 1. For spheroids, the aspect ratio is sometimes defined as A1, which is the ratio of the ellipsoid semi-axes along and across the axis of symmetry [13]. For this definition, small aspect ratios correspond to oblate particles like graphenes, and low percolation thresholds will correspond not only to the limit A1 → ∞, but also to A1 → 0.

REFERENCES

  1. G. W. Milton, The Theory of Composites (Cambridge Univ. Press, Cambridge, 2004).

    Google Scholar 

  2. A. Sihvola, Electromagnetic Mixing Formulas and Applications, Electromagnetic Wave Series 47 (IEE Publ., London, 1999).

    Book  Google Scholar 

  3. D. A. G. Bruggeman, Ann. Phys. 23, 636 (1935).

    Article  Google Scholar 

  4. J. C. Maxwell Garnet, Philos. Trans. R. Soc., A 203, 385 (1904).

  5. H. M. Ma, X.-L. Gao, and T. B. Tolle, Appl. Phys. Lett. 96, 061910 (2010).

    Article  ADS  Google Scholar 

  6. I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys. Rev. B 30 (7), 3933 (1984).

    Article  ADS  Google Scholar 

  7. A. P. Chatterjee, J. Chem. Phys. 137, 34903 (2012).

    Article  Google Scholar 

  8. H. J. Otten and P. van der Schoot, J. Chem. Phys. 134, 094902 (2011).

    Article  ADS  Google Scholar 

  9. W. Lamb, D. M. Wood, and N. W. Ashcroft, Phys. Rev. B 21 (6), 2248 (1980).

    Article  ADS  Google Scholar 

  10. C. G. Granquist and O. Hunderi, Phys. Rev. 18 (4), 1554 (1978).

    Article  ADS  Google Scholar 

  11. L. A. Apresyan, D. V. Vlasov, D. A. Zadorin, and V. I. Krasovskii, Tech. Phys. 62 (1), 6 (2017).

    Article  Google Scholar 

  12. Y. Sun, H.-D. Bao, Z.-X. Guo, and J. Yu, Macromolecules 42, 459 (2009).

    Article  ADS  Google Scholar 

  13. Y. Wang, J. W. Shan, and G. J. Weng, J. Appl. Phys. 118, 065101 (2015).

    Article  ADS  Google Scholar 

  14. I. Sagalianov, L. Vovchenko, L. Matzu, and O. Lazarenko, Nanoscale Res. Lett. 12, 140 (2017).

    Article  ADS  Google Scholar 

  15. Yu. Perets, L. Aleksandrovych, M. Melnychenko, O.  Lazarenko, L. Vovchenko, and L. Matzui, Nanoscale Res. Lett. 12, 406 (2017).

    Article  ADS  Google Scholar 

  16. H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, and Z. Guo, Nanoscale 8, 12977 (2016).

    Article  ADS  Google Scholar 

  17. Y. Chen, F. Pan, S. Wang, B. Liu, and J. Zhang, Compos. Struct. 124, 292 (2015).

    Article  Google Scholar 

  18. L. A. Apresyan, Light & Eng. 27 (1), 4 (2019).

    Article  Google Scholar 

  19. V. A. Markel, J. Opt. Soc. Am. A 33 (7), 1244 (2016).

    Article  ADS  Google Scholar 

  20. D. Schmidt and M. Schubert, J. Appl. Phys. 114 (8), 083510 (2013).

    Article  ADS  Google Scholar 

  21. T. Mackay and A. Lakhtakia, J. Nanophotonics 6 (1), 0695012 (2012).

    Article  Google Scholar 

  22. L. A. Apresyan and D. V. Vlasov, Tech. Phys. 59 (12), 1760 (2014).

    Article  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rasmagin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apresyan, L.A., Vlasova, T.V., Krasovskii, V.I. et al. Effective Medium Approximations for the Description of Multicomponent Composites. Tech. Phys. 65, 1130–1138 (2020). https://doi.org/10.1134/S106378422007004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422007004X

Navigation