Skip to main content

Generalized Differential Effective Medium Method for Simulating Effective Physical Properties of 2D Percolating Composites

  • Chapter
Generalized Models and Non-classical Approaches in Complex Materials 2

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 90))

  • 859 Accesses

Abstract

In this paper, we propose an approach for calculating the effective physical properties of composite materials taking into account the percolation phenomena. This approach is based on the Generalized Differential Effective Medium (GDEM) method and, in contrast to the commonly used self-consistent methods, allows us to incorporate the percolation threshold into the homogenization scheme for simulation of the effective elastic moduli and electrical conductivity of a 2D medium. In this case, the composite is treated as a conductive elastic host where elliptical inclusions of two types are embedded: (1) non-conductive soft inclusions and (2) conductive elastic inclusions that have the same properties as the host. The comparison of theoretical simulations with the experimental data for metal plates containing holes has shown that the proposed GDEM approach describes well the elastic moduli and electrical conductivity of materials of such type in the wide range of hole concentration including the area near the percolation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergman, D.J., Stroud, D.: Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 148 (1992). https://doi.org/10.1016/S0081-1947(08)60398-7

    Article  Google Scholar 

  2. Berryman, J.G.: Mixture theories for rock properties. In: Ahrens, T.J. (ed.) A Handbook of Physical Constants, p. 205. American Geophysical Union, Washington, D.C. (1995)

    Google Scholar 

  3. Markov, K.Z.: Elementary micromechanics of heterogeneous solids. In: Markov, K.Z., Preziosi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulation, p. 1. Birkhauser, Boston (2000)

    Google Scholar 

  4. Goncharenko, A.V.: Generalizations of the Bruggeman equations and a concept of shape-distributed composites. Phys. Rev. E 68, 041108 (2003)

    Google Scholar 

  5. Brosseau, C.: Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective. J. Phys. D: Appl. Phys. 39, 1277 (2006)

    Article  Google Scholar 

  6. Kanaun, S., Levin, V.: Self-consistent methods for composites. In: Static Problems, vol. 1, p. 376. Springer (2008)

    Google Scholar 

  7. Milton, G.: The coherent potential approximation is a realizable effective medium scheme. Comm. Math. Phys. 99, 463 (1985)

    Article  MathSciNet  Google Scholar 

  8. Avellaneda, M.: Iterated homogenization, differential effective medium theory and applications. Commun. Pure Appl. Math. 40, 527 (1987). https://doi.org/10.1002/cpa.3160400502

    Article  MathSciNet  MATH  Google Scholar 

  9. Norris, A.N.: A differential scheme for the effective moduli of composites. Mech. Mater. 4, 1 (1985)

    Article  Google Scholar 

  10. Bruggeman, D.A.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. Lpz. 24, 636 (1935)

    Article  Google Scholar 

  11. Berryman, J.G., Berge, P.A.: Critique of two explicit schemes for estimating elastic properties of multiphase composites. Mech. Mater. 22, 149 (1996)

    Article  Google Scholar 

  12. Landauer, R.: Electrical conductivity in inhomogeneous media. In: Garland, J.C., Tanner, D.B. (eds.) Electrical, Transport and Optical Properties of Inhomogeneous Media. AIP, New York (1978)

    Google Scholar 

  13. Sen, P., Scala, C., Cohen, M.H.: A self similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46, 781 (1981)

    Article  Google Scholar 

  14. Sheng, P.: Effective-medium theory of sedimentary rocks. Phys. Rev. B 41, 4507 (1990)

    Article  Google Scholar 

  15. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam (1993)

    Google Scholar 

  16. Chinh, P.D.: Modeling the conductivity of highly consolidated, bi-connected porous rocks. J. Appl. Phys. 84, 3355 (1998)

    Article  Google Scholar 

  17. Tobochnik, J., Laing, D., Wilson, G.: Random-walk calculation of conductivity in continuum percolation. Phys. Rev. A 41, 3052 (1990)

    Article  Google Scholar 

  18. Zimmerman, R.W.: Effective conductivity of a two-dimensional medium containing elliptical inclusions. Proc. R. Soc. Lond. A 452, 1713 (1996)

    Article  Google Scholar 

  19. Norris, A.N., Callegary, A.J., Sheng, P.: A generalized differential effective medium theory. J. Mech. Phys. Solids 33, 525 (1985)

    Article  Google Scholar 

  20. Hashin, Z.: The differential scheme and its application to cracked materials. J. Mech. Phys. Solids 36, 719 (1988)

    Article  MathSciNet  Google Scholar 

  21. Thorpe, M.F., Sen, P.: Elastic moduli of two-dimensional composite continua with elliptical inclusions. J. Acoust. Soc. America 77, 1674 (1985)

    Article  Google Scholar 

  22. Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351 (1945)

    Article  Google Scholar 

  23. Landau, L.D., Lifshitz, E.: Electrodynamics of Continuous Media. Pergamon press, N.Y (1984)

    Google Scholar 

  24. Markov, M., Levin, V., Mousatov, A., Kazatchenko, E.: Generalized DEM model for the effective conductivity of a two-dimensional percolating medium. Int. J. Eng. Sci. 58, 78 (2012)

    Article  Google Scholar 

  25. Butcher, J.C.: Numerical methods for ordinary differential equations, Wiley (2003)

    Google Scholar 

  26. Xia, W., Thorpe, M.F.: Percolation properties of random ellipses. Phys. Rev. A 38, 2650 (1988). https://doi.org/10.1103/PhysRevA.38.2650

    Article  MathSciNet  Google Scholar 

  27. Garboczi, E., Thorpe, M.F., DeVries, M., Day, A.R.: Universal conductivity curve for a plane containing random holes. Phys. Rev. A 43, 6473 (1991)

    Article  MathSciNet  Google Scholar 

  28. Lobb, C.J., Forrester, M.G.: Measurement of nonuniversal critical behavior in a two-dimensional continuum percolating system. Phys. Rev. B 35, 1899 (1987). https://doi.org/10.1103/PhysRevB.35.1899

    Article  Google Scholar 

  29. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor K Francis, Bristol (1991)

    MATH  Google Scholar 

  30. Tobochnik, J., Dubson, M.A., Wilson, M.L., Thorpe, M.F.: Conductance of a plane containing random cuts. Phys. Rev. A 40, 5370 (1989). https://doi.org/10.1103/PhysRevA.40.5370

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Professors Christopher Lobb, Sergey Kanaun and Dr. Irina Markova for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Markov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Markov, M., Levin, V., Pervago, E. (2018). Generalized Differential Effective Medium Method for Simulating Effective Physical Properties of 2D Percolating Composites. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics