Skip to main content
Log in

Specific Features of Electron Transport in a Molecular Nanodevice Containing a Nitroamine Redox Center

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Density functional theory in the local-density approximation and the method of nonequilibrium Green functions (DFT + NEGF) are used to study electron transport in a nanodevice consisting of the 2'-amino-4-ethynylphenyl-4'-ethynylphenyl-5'-nitro-1-benzenethiol molecule located between gold electrodes. The IV and dI/dV characteristics, transmission spectrum, and electron density of the nanodevice are calculated. It is shown that the IV characteristic of the nanodevice exhibits N shape in a voltage interval of –0.8–0.9 V and a fragment with a negative differential resistance related to the resonance tunneling of quasi-particles. The same changes are observed on the dI/dV characteristic. The results can be used for calculation of promising electronic switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013). https://doi.org/10.1038/nature12385

    Article  Google Scholar 

  2. J. C. Cuevas and E. Scheer, Molecular Electronics (An Introduction to Theory and Experiment) (World Scientific, 2017). https://doi.org/10.1142/10598

  3. N. Agrait, A. L. Yeyati, and J. M. van Ruitenbeek, Phys. Rep. 377, 81 (2003). https://doi.org/10.1016/S0370-1573(02)00633-6

    Article  ADS  Google Scholar 

  4. M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. L. Hollenberg, G. Klimeck, and M. Y. Simmons, Nat. Nanotechnol. 7, 242 (2012). https://doi.org/10.1038/nnano.2012.21

    Article  ADS  Google Scholar 

  5. D. Sergeyev, Russ. Phys. J. 59, 456 (2016). https://doi.org/10.1007/s1118

    Article  Google Scholar 

  6. E. S. Soldatov, V. V. Khanin, A. S. Trifonov, S. P. Gubin, V. V. Kolesov, D. E. Presnov, S. A. Yakovenko, G. V. Khomutov, and A. N. Korotkov, Phys.-Usp. 41, 202 (1998). https://doi.org/10.1070/PU1998v041n02ABEH000364

    Article  Google Scholar 

  7. A. L. Klavsyuk, S. V. Kolesnikov, E. M. Smelova, and A. M. Saletsky, Phys. Solid State 53, 2356 (2011). https://doi.org/10.1134/S106378341111014X

    Article  ADS  Google Scholar 

  8. N. P. Guisinger, M. E. Greene, R. Basu, A. S. Baluch, M. C. Hersam, Nano Lett. 4, 55 (2004). https://doi.org/10.1021/nl0348589

    Article  ADS  Google Scholar 

  9. N. P. Guisinger, R. Basu, M. E. Greene, A. S. Baluch, and M. C. Hersam, Nanotechnology 15, 452 (2004). https://doi.org/10.1088/0957-4484/15/7/052

    Article  ADS  Google Scholar 

  10. T. Rakshit, G. Ch. Liang, A. W. Ghosh, and S. Datta, Nano Lett. 4, 1803 (2004). https://doi.org/10.1021/nl049436t

    Article  ADS  Google Scholar 

  11. R. Houbertz, U. Weber, and U. Hartmann, Appl. Phys. A 66, S149 (1998). https://doi.org/10.1007/s003390051

    Article  ADS  Google Scholar 

  12. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 63, 1696 (2014). https://doi.org/10.1007/s11172-014-0655-y

    Article  Google Scholar 

  13. M. A. Lapshina, D. O. Filatov, D. A. Antonov, and N. S. Barantsev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 3, 559 (2009).

    Article  Google Scholar 

  14. F. I. Dalidchik, E. M. Balashov, and S. A. Kovalevskiy, JETP Lett. 108, 471 (2018). https://doi.org/10.1134/S0021364018190050

    Article  ADS  Google Scholar 

  15. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999). https://doi.org/10.1126/science.286.5444.1550

    Article  Google Scholar 

  16. J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 77, 1224 (2000). https://doi.org/10.1063/1.1289650

    Article  ADS  Google Scholar 

  17. M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002). https://doi.org/10.1103/PhysRevB.65.165401

    Article  ADS  Google Scholar 

  18. Atomistix ToolKit. Manual Version 2015.1 (QuantumWise A/S, Copenhagen, 2015).

  19. D. Sergeyev and K. Shunkeyev, Russ. Phys. J. 60, 1938 (2018). https://doi.org/10.1007/s1118

    Article  Google Scholar 

  20. D. Sergeyev, J. Nano- Electron. Phys. 10, 03018 (2018). https://doi.org/10.21272/jnep.10(3).03018

    Article  Google Scholar 

  21. R. Landauer, Philos. Mag. 21, 863 (1970). https://doi.org/10.1080/14786437008238472

    Article  ADS  Google Scholar 

  22. T. R. Mattsson, J. M. D. Lane, K. R. Cochrane, M. P. Desjarlais, A. P. Thompson, F. Pierce, and G. S. Grest, Phys. Rev. B 81, 054103 (2010). https://doi.org/10.1103/PhysRevB.81.054103

    Article  ADS  Google Scholar 

  23. H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Phys. Rev. B 83, 134118 (2011). https://doi.org/10.1103/PhysRevB.83.134118

    Article  ADS  Google Scholar 

  24. S. Datta, Quantum Transport: Atom to Transistor (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  25. E. M. Balashov, B. A. Budanov, F. I. Dalidchik, and S. A. Kovalevskiy, JETP Lett. 101, 643 (2015). https://doi.org/10.1134/S0021364015090052

    Article  ADS  Google Scholar 

  26. S. Datta, Nanotechnology 15, S433 (2004). https://doi.org/10.1088/0957-4484/15/7/051

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Sergeyev.

Ethics declarations

The author declares that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeyev, D.M. Specific Features of Electron Transport in a Molecular Nanodevice Containing a Nitroamine Redox Center. Tech. Phys. 65, 573–577 (2020). https://doi.org/10.1134/S1063784220040180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220040180

Navigation