Skip to main content
Log in

Identification of Dynamic Patterns of Epileptic Seizures in Children by Nonlinear Mechanics Methods

  • PHYSICS FOR SCIENCES OF LIFE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Recurrence quantification analysis and multifractal analysis were used to study the encephalograms time series of the principal components of children with epilepsy. It is shown that epileptic seizures are accompanied by an increase in the determinism of the brain’s electrical activity process. This increase is due to the synchronization of neuronal activity during epileptic seizures. It is noted that this behavior is similar to the behavior of nonlinear systems of a different physical nature in catastrophic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. N. Moiseev, Asymptotic Methods of Nonlinear Mechanics (Nauka, Moscow, 1981).

    MATH  Google Scholar 

  2. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  3. G. G. Malinetskii and A. B. Potapov, Current Problems of Nonlinear Dynamics (Editorial URSS, Moscow, 2000).

    Google Scholar 

  4. C. C. Olson, J. M. Nichols, and L. N. Virgin, Nonlinear Dyn. 70, 381 (2012). https://doi.org/10.1007/s11071-012-0461-8

    Article  Google Scholar 

  5. R. Hegger, H. Kantz, and T. Schreiber, Chaos 9, 413 (1999). https://doi.org/10.1063/1.166424

    Article  ADS  Google Scholar 

  6. J. M. Nichols, S. T. Trickey, and M. Seaver, Mech. Syst. Signal Process. 20, 421 (2006). https://doi.org/10.1016/j.ymssp.2004.08.007

    Article  ADS  Google Scholar 

  7. J. M. Nichols, M. Seavera, and S. T. Trickeya, J. Sound Vib. 297, 1 (2006). https://doi.org/10.1016/j.jsv.2006.01.025

  8. V. L. Hilarov, Phys. Solid State 57, 2271 (2015). https://doi.org/10.1134/S1063783415110116

    Article  ADS  Google Scholar 

  9. V. B. Smirnov, A. V. Ponomarev, and A. D. Zavyalov, Fiz. Zemli, No. 1, 38 (1995).

    Google Scholar 

  10. S. Kacimi and S. Laurens, J. Appl. Phys. 106, 024909 (2009). https://doi.org/10.1063/1.3169601

    Article  ADS  Google Scholar 

  11. N. V. Zolotova and D. I. Ponyavin, Uch. Zap. S.-Peterb. Gos. Univ. Vopr. Geofiz., No. 38, 203 (2005).

  12. V. S. Zakharov, Nelineinyi Mir 8, 234 (2010).

    Google Scholar 

  13. A. A. Lyubushin, J. Seismol. 19, 329 (2015). https://doi.org/10.1007/s10950-014-9468-6

    Article  ADS  Google Scholar 

  14. V. B. Smirnov, A. V. Ponomarev, Q. Jiadong, and A. S. Cherepantsev, Izv., Phys. Solid Earth 41, 428 (2005).

    Google Scholar 

  15. X. L. Lei, O. Nishizawa, and K. Kusunose, Geophys. J. Int. 115, 79 (1993). https://doi.org/10.1111/j.1365-246X.1993.tb05589.x

    Article  ADS  Google Scholar 

  16. P. V. Makarov and M. O. Eremin, Phys. Mesomech. 21, 283 (2018).

    Article  Google Scholar 

  17. A. A. Mekler, Vestn. Nov. Med. Tekhnol. 14, 73 (2007).

    Google Scholar 

  18. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, Circulation 101, E215 (2000). https://doi.org/10.1161/01.CIR.101.23.e215

    Article  Google Scholar 

  19. A. Fabretti and M. Ausloos, Int. J. Mod. Phys. C 16, 671 (2005). https://doi.org/10.1142/S0129183105007492

    Article  ADS  Google Scholar 

  20. Modelling and Forecasting Financial Data, Ed. by A. S. Soofi and C. Liangyue (Springer, 2002).

    Google Scholar 

  21. Nonlinear Economic Dynamics and Financial Modelling, Ed. by R. Dieci, X.-Z. He, and C. Hommes (Springer, 2014).

    MATH  Google Scholar 

  22. M. Faggini, Chaos 24, 042101 (2014). https://doi.org/10.1063/1.4903797

    Article  ADS  MathSciNet  Google Scholar 

  23. D. L. Turcotte, Rep. Prog. Phys. 62, 1377 (1999). https://doi.org/10.1088/0034-4885/62/10/201

    Article  ADS  Google Scholar 

  24. J.-P. Eckmann, S. O. Kampost, and D. Ruelle, Europhys. Lett. 4, 973 (1987).

    Article  ADS  Google Scholar 

  25. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Phys. Rep. 438, 237 (2007). https://doi.org/10.1016/j.physrep.2006.11.001

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Feder, Fractals (Plenum, New York, 1988).

    Book  Google Scholar 

  27. A. N. Pavlov and V. S. Anishchenko, Phys.-Usp. 50, 819 (2007).

    Article  Google Scholar 

  28. F. Sharbrough, G.-E. Chatrian, R. P. Lesser, H. Luders, M. Nuwer, and T. W. Picton, J. Clin. Neurophysiol. 8, 200 (1991).

    Article  Google Scholar 

  29. K. H. Esbensen, Multivariate Data AnalysisInPractice (Camo, 2000).

    Google Scholar 

  30. V. P. D’yakonov, Wavelets. From Theory to Practice (SOLON-Press, Moscow, 2010).

    Google Scholar 

  31. A. Kharbouch, A. Shoeb, and J. Guttag, Epilepsy Behav. 22, S29 (2011). https://doi.org/10.1016/j.yebeh.2011.08.031

    Article  Google Scholar 

  32. L. R. Zenkov, Clinical Electroencephalography (with Elements of Epileptology). Guidelines for Physicians (MEDpressinform, Moscow, 2017).

  33. A. Shoeb, PhD Thesis (Massachusetts Inst. of Technology, 2009).

  34. H. Wendt, P. Abry, and S. Jaffard, IEEE Signal Process. Mag. 24 (4), 38 (2007). https://doi.org/10.1109/MSP.2007.4286563

    Article  ADS  Google Scholar 

  35. H. Wendt, S. G. Roux, S. Jaffard, and P. Abry, Signal Process. 89, 1100 (2009). https://doi.org/10.1016/j.sigpro.2008.12.015

    Article  Google Scholar 

  36. J. F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. E 47, 875 (1993). https://doi.org/10.1103/PhysRevE.47.875

    Article  ADS  Google Scholar 

  37. P. Ch. Ivanov, N. L. A. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzikk, and H. E. Stanley, Nature 399, 461 (1999). https://doi.org/10.1038/20924

    Article  ADS  Google Scholar 

  38. D. Makowiec, R. Galaska, A. Dudkowska, A. Rynkiewicz, and M. Zwierz, Phys. A 369, 632 (2006). https://doi.org/10.1016/j.physa.2006.02.038

    Article  Google Scholar 

  39. V. L. Hilarov, V. E. Korsukov, P. N. Butenko, and V. N. Svetlov, Phys. Solid State 46, 1868 (2004).

    Article  ADS  Google Scholar 

  40. V. E. Korsukov, S. A. Knyazev, P. N. Butenko, V. L. Gilyarov, M. M. Korsukova, I. A. Nyapshaev, and B. A. Obidov, Phys. Solid State 59, 316 (2017). https://doi.org/10.1134/S1063783417020135

    Article  ADS  Google Scholar 

  41. S. J. Gibowicz and S. Lasocki, in Advances in Geophysics, Ed. by R. Dmowska and B. Saltzman (Elsevier, 2001), Vol. 44, p. 39. https://doi.org/10.1016/S0065-2687(00)80007-2

    Google Scholar 

  42. V. A. Kasimova, G. N. Kopylova, and A. A. Lyubushin, Izv., Phys. Solid Earth 54, 269 (2018). https://doi.org/10.1134/S1069351318020076

    Article  Google Scholar 

  43. V. L. Gilyarov, E. E. Damaskinskaya, and I. Yu. Rasskazov, Probl. Nedropol’zovaniya, No. 2, 53 (2016). https://doi.org/10.18454/2313-1586.2016.02.05

  44. E. E. Damaskinskaya, V. L. Hilarov, I. A. Panteleev, D. R. Gafurova, and D. I. Frolov, Phys. Solid State 60, 1821 (2018). https://doi.org/10.1134/S106378341809007X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Hilarov.

Ethics declarations

The author declares that he does not have any conflicts of interest.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilarov, V.L. Identification of Dynamic Patterns of Epileptic Seizures in Children by Nonlinear Mechanics Methods. Tech. Phys. 65, 485–491 (2020). https://doi.org/10.1134/S106378422003007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422003007X

Navigation