Skip to main content
Log in

Kinetic Theory of the Wall Sheath for Arbitrary Conditions in a Gas-Discharge Plasma

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The self-consistent problem of the structure of a perturbed wall sheath in a dc gas-discharge plasma near a flat surface under negative potential relative to the plasma has been solved for an arbitrary relation between the Debye radius and the ion mean free path. The solution has been obtained without artificial separation of this layer into the quasi-neutral “presheath” and the wall sheath in which quasi-neutrality is violated substantially. The actual ion distribution function in the unperturbed plasma, the dependence of the charge-exchange cross section on the ion energy, and the nonzero electric field in the unperturbed plasma have been considered. It is shown that when the average electron energy is conserved the structure of the perturbed wall sheath weakly depends on the form of the electron distribution function. It has been established that the mean energy of ions in the unperturbed plasma substantially affects the structure of the quasi-neutral presheath as well as the structure of a part of the wall sheath in which quasi-neutrality is not observed even under the assumption that the mean electron energy is much higher than the mean energy of ions. The calculations of ion flow parameters and the structure of the perturbed wall sheath are in conformity with experimental data obtained by other authors, which could not be adequately interpreted earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. V. M. Donnelly and A. Kornblit, J. Vac. Sci. Technol. A 31, 050825 (2013).

    Article  Google Scholar 

  2. D. J. Sturges and H. J. Oskam, J. Appl. Phys. 35, 2887 (1964).

    Article  ADS  Google Scholar 

  3. M. Rubel et al., J. Nucl. Mater. 196, 285 (1992).

    Article  ADS  Google Scholar 

  4. V. V. Dunaev, A. G. Zhiglinskii, V. S. Sukhomlinov, and E. N. Fafurina, Zh. Tekh. Fiz. 62 (2), 41 (1992).

    Google Scholar 

  5. Y. Raizer, Gas Discharge Physics (Springer, 1991, р. 536.).

    Book  Google Scholar 

  6. X. P. Chen, Phys. Plasmas 5, 804 (1998).

    Article  ADS  Google Scholar 

  7. D. Bohm, The Characteristics of Electrical Discharge in Magnetic Fields (McGraw-Hill, New York, 1949, vol. 13.).

    Google Scholar 

  8. K. Riemann, Plasma Sources Sci. Technol. 18, 014006 (2009).

    Article  ADS  Google Scholar 

  9. M. Benilov, Plasma Sources Sci. Technol. 18, 014005 (2008).

    Article  ADS  Google Scholar 

  10. J. Allen, Plasma Sources Sci. Technol. 18, 014004 (2009).

    Article  ADS  Google Scholar 

  11. R. Brinkmann, J. Phys. D: Appl. Phys. 44, 042002 (2011).

    Article  ADS  Google Scholar 

  12. G. Kino and E. Shaw, Phys. Fluids 9, 587 (1966).

    Article  ADS  Google Scholar 

  13. F. F. Chen, Introduction to Plasma Physics (Plenum, New York, London, 1974).

    Google Scholar 

  14. T. Tsankov and U. Czarnetzki, Plasma Sources Sci. Technol. 26, 055003 (2017).

    Article  ADS  Google Scholar 

  15. L. Kos, S. Tskhakaya, and N. Jelic, Phys. Plasmas 22, 093503 (2015).

    Article  ADS  Google Scholar 

  16. K. Riemann, J. Phys. D: Appl. Phys. 36, 2811 (2003).

    Article  ADS  Google Scholar 

  17. K. Riemann, J. Phys. D: Appl. Phys. 24, 493 (1991).

    Article  ADS  Google Scholar 

  18. S. Baalrud and C. Hegna, Plasma Sources Sci. Technol. 20, 025013 (2011).

    Article  ADS  Google Scholar 

  19. K. Riemann, Phys. Plasmas 13, 063508 (2006).

    Article  ADS  Google Scholar 

  20. V. Godyak, Phys. Lett. A 89, 80 (1982).

    Article  ADS  Google Scholar 

  21. H. Valentini, Phys. Plasmas 3, 1459 (1996).

    Article  ADS  Google Scholar 

  22. X. Chen, Phys. Plasmas 5, 804 (1998).

    Article  ADS  Google Scholar 

  23. K. Riemann, Phys. Fluids 24, 2163 (1981).

    Article  ADS  Google Scholar 

  24. I. Kaganovich, Phys. Plasmas 9, 4788 (2002).

    Article  ADS  Google Scholar 

  25. N. Raoul, IEEE Trans. Plasma Sci. 30, 352 (2002).

    Article  Google Scholar 

  26. V. Godyak and N. Sternberg, IEEE Trans. Plasma Sci. 31, 303 (2003).

    Article  ADS  Google Scholar 

  27. R. N. Franklin, J. Phys. D: Appl. Phys. 36, 2821 (2003).

    Article  ADS  Google Scholar 

  28. K. Riemann, Plasma Sources Sci. Technol. 21, 068001 (2012).

    Article  ADS  Google Scholar 

  29. A. Mustafaev, V. Sukhomlinov, and M. Ainov, Tech. Phys. 60, 1778 (2015).

    Article  Google Scholar 

  30. H. Valentini and D. Kaiser, Phys. Plasmas 22, 053512 (2015).

    Article  ADS  Google Scholar 

  31. J. Liu, Z. Wang, and X. Wang, Phys. Plasmas 10, 3032 (2003).

    Article  ADS  Google Scholar 

  32. I. Kotelnikov and D. Skovorodin, Plasma Phys. Rep. 42, 186 (2016).

    Article  ADS  Google Scholar 

  33. V. Sukhomlinov, A. Mustafaev, A. Grabovskii, and M. Ainov, Proc. 42nd European Physical Society Conf. on Plasma Physics, Lisbon, Portugal, 2015, p. 5.168. http://ocs.ciemat.es/EPS2015PAP/pdf/P5.168.pdf.

  34. H. Wang, V. Sukhomlinov, I. Kaganovich, and A. Mustafaev, Plasma Sources Sci. Technol. 26, 024001 (2017).

    Article  ADS  Google Scholar 

  35. H. Wang, V. Sukhomlinov, I. Kaganovich, and A. Mustafaev, Plasma Sources Sci. Technol. 26, 024002 (2017).

    Article  ADS  Google Scholar 

  36. A. S. Mustafaev and V. S. Soukhomlinov, J. Min. Inst. 222, 864 (2016).

    Google Scholar 

  37. A. Mustafaev, V. Sukhomlinov, and M. Ainov, High Temp. 55, 346 (2007).

    Article  Google Scholar 

  38. L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).

    Article  ADS  Google Scholar 

  39. V. S. Sukhomlinov, A. S. Mustafaev, and O. Murillo, Phys. Plasmas 25, 013513 (2018).

    Article  ADS  Google Scholar 

  40. S. Maiorov, O. Petrov, and V. Fortov, Proc. 34th EPS Conf. on Plasma Physics, Warsaw, Poland, 2007, p. 2.115. http://epsppd.epfl.ch/Warsaw/pdf2/P2_115.pdf.

  41. P. Gill and C. Webb, J. Phys. D: Appl. Phys. 10, 299 (1977).

    Article  ADS  Google Scholar 

  42. V. I. Kolobov and L. D. Tsendin, Plasma Sources Sci. Technol. 4, 551 (1995).

    Article  ADS  Google Scholar 

  43. K. Riemann, U. Ehlemann, and K. Wiesemann, J. Phys. D: Appl. Phys. 25, 620 (1992).

    Article  ADS  Google Scholar 

  44. K. Riemann, Plasma Sources Sci. Technol. 18, 014007 (2009).

    Article  ADS  Google Scholar 

  45. T. Sheridan, Appl. Phys. Lett. 68, 1918 (1996).

    Article  ADS  Google Scholar 

  46. T. Sheridan, J. Phys. D: Appl. Phys. 43, 105204 (2010).

    Article  ADS  Google Scholar 

  47. T. Sheridan, Phys. Plasmas 7, 3084 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Murillo or V. S. Sukhomlinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

Let us consider relative ion energy ε = \(\frac{{{{E}_{i}}}}{{k{{T}_{e}}}}\). We assume that the dependence of charge-exchange cross section on the ion energy is defined by relation (7). Then, system (6) can be written in form [39]

$$R{\kern 1pt} '(V) = \frac{{{{\kappa }_{2}}K(V)}}{{\sqrt {F(V)} }},$$
$$\begin{gathered} F{\kern 1pt} '(V) = \frac{{2\kappa _{2}^{2}}}{{\kappa _{1}^{2}}}\{ \exp [ - R(V) + {{\kappa }_{2}}V]{\text{erfc}}(\sqrt {{{\kappa }_{2}}V} ) \\ \, + Q(V) - \exp ( - V)\} , \\ Q(V)\, = \,\sqrt {\frac{{{{\kappa }_{2}}}}{\pi }} {\text{exp}}[ - R(V)] \\ \times \,\int\limits_0^V {{\text{exp}}[R({v}{\kern 1pt} ')]\frac{{{{F}^{{ - 0.5}}}({v}{\kern 1pt} ')B({v}{\kern 1pt} ')d{v}{\kern 1pt} '}}{{\sqrt {V - {v}{\kern 1pt} '} }}} . \\ \end{gathered} $$
((A.1))

Function K(V) is the solution to integral equation

$$\begin{gathered} K(V) = \exp [ - R(V)]\int\limits_0^\infty {B[2{{\kappa }_{2}}(\varepsilon + V)]{{f}_{{i0}}}(\varepsilon )d\varepsilon } \\ \, + {{\kappa }_{2}}\exp [ - R(V)]\int\limits_0^V {{{F}^{{ - 0.5}}}({v}{\kern 1pt} ')\exp [R(V{\kern 1pt} ')]} \\ \, \times B[2{{\kappa }_{2}}(V - V{\kern 1pt} ')]K(V{\kern 1pt} ')dV{\kern 1pt} ', \\ \end{gathered} $$
((A.2))

and has a simple physical meaning; it is function B(ε) averaged over the IDF for given potential V. Function fi0(ε) on the right-hand side of expression (A.2) is the IDF in the unperturbed plasma. In the strong field approximation, when the energy of an ion acquired by it on its free path relative to the charge exchange is much higher than the thermal energy of atoms; according to [37], it is defined as

$${{f}_{{i0}}}(\varepsilon ) = C\exp ( - {{\kappa }_{2}}\varepsilon ){\text{erfc}}( - \sqrt {({{\varepsilon }_{0}} - 1){{\kappa }_{2}}\varepsilon } ),$$
((A.3))

where

$$C = \frac{{{{I}_{0}}}}{{{v}_{i}^{2}\left( {1 + \sqrt {\frac{{{{\varepsilon }_{0}} - 1}}{{{{\varepsilon }_{0}}}}} } \right)}} \approx \frac{{{{I}_{0}}}}{{2{v}_{i}^{2}}},$$

I0 is the ion flux density to which IDF fi0(v) is normalized;

$${\text{erfc}}( - x) = \frac{2}{{\sqrt \pi }}\int\limits_x^\infty {\exp ( - {{y}^{2}})dy;} $$
$${{\varepsilon }_{0}} = \frac{{eE{{\lambda }_{i}}}}{{2k{{T}_{a}}}},\quad {{{v}}_{i}} = \sqrt {\frac{{eE{{\lambda }_{i}}}}{M}} .$$

It was shown in [39] that provided that an ion in the PWS (i.e., in the quasi-neutral presheath and in the WS) experiences at least one collision (which is realized for almost any parameters in the plasma because, according to the results of calculations, the thickness of the presheath is always larger than the ion mean free path), the following solution holds for Eq. (A.2):

$$\begin{gathered} K(V) \equiv \bar {K}(V) + \left\{ {1 - {{\kappa }_{2}}\exp [ - R(V)]\int\limits_0^V {{{F}^{{ - 0.5}}}(V{\kern 1pt} ')} } \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}} \times \exp [R(V{\kern 1pt} ')]B[2{{\kappa }_{2}}(V - V{\kern 1pt} ')]\bar {K}(V{\kern 1pt} ')dV{\kern 1pt} '} \right\} \\ \times \left\{ {1 - {{\kappa }_{2}}\exp {{{[ - R(V)]}}_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}} \right. \\ {{\left. { \times \int\limits_0^V {{{F}^{{ - 0.5}}}(V{\kern 1pt} ')\exp [R(V{\kern 1pt} ')]B[2{{\kappa }_{2}}(V - V{\kern 1pt} ')]dV{\kern 1pt} '} } \right\}}^{{ - 1}}}. \\ \end{gathered} $$
((A.4))

As the zeroth approximation of the solution to system (6), we can take solution R(0)(V), F(0)(V), when K(0)(V) = B(V) is used for K(V).

For calculating the first and following approximations, we first calculate K(1)(V) using on the right-hand side of Eq. (A.2) solutions R(0)(V), F(0)(V) obtained earlier. Then, solving Eq. (A.2) with determined function K(1)(V), we obtain R(1)(V), F(1)(V), and so on. For almost any parameters κ1 and κ2, the procedure converges so rapidly that the first approximation is sufficient. To reduce the computation time, we can use the following approximate formulas obtained in [39]:

$$Q(V) \equiv {{Q}_{a}}(V) = {{F}^{{ - 0.25b(V)}}}{\text{erf}}[\sqrt {R(V)} ];$$
((A.5))
$$b(V) = 1\quad {\text{if}}\quad V < {{a}_{1}};$$
$$\begin{gathered} b(V) = 1 - 5\left[ {{{{\left( {\frac{V}{{{{a}_{1}}}}} \right)}}^{{0.075}}}{{{\left( {\frac{{{{a}_{1}}}}{V}} \right)}}^{{{{a}_{2}}}}}{{{\left( {\frac{{500}}{{{{\kappa }_{2}}}}} \right)}}^{{0.266}}} - 1} \right] \\ \times \,\,\,{{\left( {\frac{V}{{15}}} \right)}^{{{{a}_{3}}}}}{{\left( {\frac{{{{a}_{4}}}}{{{{\kappa }_{1}}}}} \right)}^{{0.7{{{\left( {\frac{{{{\kappa }_{1}}}}{{0.1}}} \right)}}^{{{{a}_{5}}}}}}}}; \\ \end{gathered} $$
$${{a}_{1}} = 8.899 \times {{10}^{{ - 4}}}{{\kappa }_{2}} + 1.611;$$
$${{a}_{2}} = - 1.11 \times {{10}^{{ - 4}}}{{\kappa }_{2}} + 1.211;$$
$${{a}_{3}} = 2.788 \times {{10}^{{ - 5}}}{{\kappa }_{2}} + 0.072;$$
$${{a}_{4}} = 0.01\quad {\text{at}}\quad {{\kappa }_{1}} \geqslant 0.005,$$
$${{a}_{4}} = - 2.5{{\kappa }_{1}} + 0.0225\quad {\text{at}}\quad {{\kappa }_{1}} < 0.005;$$
$${{a}_{5}} = 0.1\quad {\text{at}}\quad {{\kappa }_{1}} \geqslant 0.005,$$
$${{a}_{5}} = - 40{{\kappa }_{1}} + 0.32\quad {\text{at}}\quad {{\kappa }_{1}} < 0.005,$$

which are correct with an error not exceeding 5% in the following range of variation of parameters κ1 and κ2: κ1 ≥ 3 × 10–3,

$${{\kappa }_{2}} \geqslant {{\kappa }_{{2\min }}}({{\kappa }_{1}}) = \frac{{100}}{{1 + 0.8{{{\left( {\frac{{{{\kappa }_{1}}}}{{0.2}}} \right)}}^{5}}}}.$$
((A.6))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murillo, O., Mustafaev, A.S. & Sukhomlinov, V.S. Kinetic Theory of the Wall Sheath for Arbitrary Conditions in a Gas-Discharge Plasma. Tech. Phys. 64, 1308–1318 (2019). https://doi.org/10.1134/S106378421909010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421909010X

Keywords:

Navigation