Skip to main content
Log in

Substructure of Intermetallic Thin-Film Cu3Sn

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The crystalline structure of intermetallic Cu3Sn synthesized by successively condensing thin layers of copper and tin on a substrate at 150°C has been studied. Cu3Sn compound exists in a very narrow homogeneity range and has a long-period close-packed ordered D019 superstructure. It has been found that the crystal lattice exhibits many slip traces associated with dislocation motion. The dislocation motion is due to the stressed state of the crystal, which can be characterized as uniform extension. Electron micrographs show that slip traces in the Cu3Sn crystal are parallel to the (\(\bar {1}\bar {1}21\)) and (\(11\bar {2}1\)) planes belonging to pyramidal slip system II, which is a main slip system along with pyramidal and basal ones. Slip traces result from the motion of partial dislocations, as indicated by the amount of slip, which is equal to half the interplanar distance. Since the crystal is ordered, slip is accomplished by a pair of superpartial dislocations and a slip trace may be a superstructural or complex stacking fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Yao and J. K. Shang, Metall. Mater. Trans. A 26, 2677 (1995).

    Article  Google Scholar 

  2. H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, and H. Ipser, Thermochim. Acta 459, 34 (2007).

    Article  Google Scholar 

  3. S. W. Jeong, J. H. Kim, and H. M. Lee, J. Electron. Mater. 33, 1530 (2004).

    Article  ADS  Google Scholar 

  4. A. R. Fix, W. Nuchter, and J. Wilde, Soldering Surf. Mount Technol. 20, 13 (2008).

    Article  Google Scholar 

  5. T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  6. Y. Xia, X. Xie, and X. Xie, J. Mater. Sci. 41, 2359 (2006).

    Article  ADS  Google Scholar 

  7. B. Liu, Y. Tian, J. Feng, and C. Wang, J. Mater. Sci. 52, 1943 (2017).

    Article  ADS  Google Scholar 

  8. A. N. Makrushina and V. A. Plotnikov, in Proc. Int. Symp. “Advanced Materials and Technologies,” Vitebsk, Belarus, 2017, p. 134.

  9. D. H. Nam, R. H. Kim, D. W. Han, and H. S. Kwon, Electrochim. Acta 66, 126 (2012).

    Article  Google Scholar 

  10. M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, 1965).

    Google Scholar 

  11. B. A. Grinberg and V. I. Syutkina, New Methods for Strengthening Ordered Alloys (Metallurgiya, Moscow, 1985).

    Google Scholar 

  12. T. Hashimoto, M. Nakamura, and S. Takeuchi, Mater. Trans. 31, 195 (1990).

    Article  Google Scholar 

  13. J. D. Bernal, Nature 122, 54 (1928).

    Article  ADS  Google Scholar 

  14. W.-H. Chen, C.-F. Yu, H.-C. Cheng, and S.-T. Lu, Microelectron. Reliab. 52, 1699 (2012).

    Article  Google Scholar 

  15. Y. Watanabe, Y. Fujinaga, and H. Iwasaki, Acta Crystallogr. B 39, 306 (1983).

    Article  Google Scholar 

  16. P. L. Brooks and E. Gillam, Acta Metall. 18, 1181 (1970).

    Article  Google Scholar 

  17. C. J. Muller and S. Lidin, Acta Crystallogr. B 70, 879 (2014).

    Article  Google Scholar 

  18. S. Furtauer, D. Li, D. Cupid, and H. Flandorfer, Intermetallics 34, 142 (2013).

    Article  Google Scholar 

  19. A. A. Klopotov, A. I. Potekaev, E. V. Kozlov, Yu. I. Tyurin, K. P. Aref’ev, N. O. Solonitsina, and V. D. Klopotov, Crystallogeometrical and Crystallochemical Laws of Formation of Binary and Ternary Compounds Based on Titanium and Nickel (Tomsk. Politekh. Univ., Tomsk, 2011).

    Google Scholar 

  20. Y. Minonishi and M. H. Yoo, Philos. Mag. Lett. 61, 203 (1990).

    Article  ADS  Google Scholar 

  21. Y. Minonishi, Philos. Mag. A 63, 1085 (1991).

    Article  ADS  Google Scholar 

  22. Y. Umakoshi, T. Nakano, T. Takenaka, K. Sumimoto, and T. Yamane, Acta Metall. Mater. 41, 1149 (1993).

    Article  Google Scholar 

  23. M. Legros, A. Couret, and D. Caillard, Philos. Mag. A 73, 81 (1996).

    Article  ADS  Google Scholar 

  24. L. I. Yakovenkova, L. E. Karkina, and M. Ya. Rabovskaya, Tech. Phys. 48, 1280 (2003).

    Article  Google Scholar 

  25. R. Oguma and S. Matsumura, Trans. Mater. Res. Soc. Jpn. 40, 325 (2015).

    Article  Google Scholar 

  26. M. D. Starostenkov and B. F. Dem’yanov, Metallofiz. Noveishie Tekhnol. 7, 128 (1985).

    Google Scholar 

  27. S. A. Court, J. P. A. Lofvander, M. H. Loretto, and H. L. Fraser, Philos. Mag. A 59, 379 (1989).

    Article  ADS  Google Scholar 

  28. L. I. Yakovenkova, L. E. Karkina, and M. Ya. Rabovskaya, Tech. Phys. 48, 56 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Plotnikov.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushina, A.N., Plotnikov, V.A., Dem’yanov, B.F. et al. Substructure of Intermetallic Thin-Film Cu3Sn. Tech. Phys. 64, 853–857 (2019). https://doi.org/10.1134/S1063784219060112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060112

Navigation