Skip to main content

Advertisement

Log in

Enhanced shear strength of Cu–Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the electric current density of 1.44 × 104 A cm−2 was imposed to assemble Cu/(30μm) Sn/Cu interconnection systems without flux at ambient temperature to fabricate Cu–Sn interconnects within 180 ms. From the three-dimensional microstructural observation of interfacial intermetallic compounds (IMCs) at different bonding times, the rod-like Cu6Sn5 formed at the initial stage was changed into dendritic Cu6Sn5 due to constitutional supercooling. When the joule heat-induced temperature was increased above the melting point of Cu6Sn5, the dendritic Cu6Sn5 were melted and then totally converted into Cu3Sn, resulting in the formation of homogeneous Cu3Sn intermetallic joints. The ultrarapid microstructure evolution of the interfacial IMCs was caused by enhanced solid–liquid interdiffusion kinetics, which can be attributed to the joule heating effect as well as the solid–liquid electromigration of Cu in molten Sn with the passage of electric current. In addition, the mechanical analysis shows that the microstructure changes of interfacial IMCs can strongly influence the shear strength as well as the fracture mechanism of the resulted joints. The dendritic network of Cu–Sn IMCs enhanced the shear strength of resulted joints due to the interlocking effect, meanwhile, the homogeneous Cu3Sn joint exhibited the highest shear strength of 67.3 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Xiao G, Yang X, Yuan G, Li Z, Shu X (2015) Mechanical properties of intermetallic compounds at the Sn–3.0Ag–0.5Cu/Cu joint interface using nanoindentation. Mater Des 88:520–527

    Article  Google Scholar 

  2. Goh Y, Haseeb A, Liew HL, Sabri MFM (2015) Deformation and fracture behaviour of electroplated Sn–Bi/Cu solder joints. J Mater Sci 50:4258–4269. doi:10.1007/s10853-015-8978-0

    Article  Google Scholar 

  3. Zhong WH, Chan YC, Wu BY, Alam MO, Guan JF (2007) Multiple reflow study of ball grid array (BGA) solder joints on Au/Ni metallization. J Mater Sci 42:5239–5247. doi:10.1007/s10853-006-1234-x

    Article  Google Scholar 

  4. Chiu WL, Liu CM, Haung YS, Chen C (2014) Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization. Appl Phys Lett 104:171902

    Article  Google Scholar 

  5. Hsiao HY, Liu CM, Lin HW, Liu TC, Lu CL, Huang YS, Chen C, Tu K (2012) Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 336:1007–1010

    Article  Google Scholar 

  6. Huang M, Yang F (2014) Size effect model on kinetics of interfacial reaction between Sn−xAg−yCu solders and Cu substrate. Sci Rep 4:7117

    Article  Google Scholar 

  7. Chen C, Yu D, Chen KN (2015) Vertical interconnects of microbumps in 3D integration. MRS Bull 40:257–263

    Article  Google Scholar 

  8. Mo L, Chen Z, Wu F, Liu C (2015) Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 66:13–21

    Article  Google Scholar 

  9. Choudhury SF, Ladani L (2016) Miniaturization of micro-solder bumps and effect of IMC on stress distribution. J Electron Mater 45:3683–3694

    Article  Google Scholar 

  10. Choudhury SF, Ladani L (2015) Effect of intermetallic compounds on the thermomechanical fatigue life of three-dimensional integrated circuit package microsolder bumps: finite element analysis and study. J Electron Packag 137:041003

    Article  Google Scholar 

  11. Choudhury SF, Ladani L (2016) Local shear stress-strain response of Sn–3.5Ag/Cu solder joint with high fraction of intermetallic compounds: experimental analysis. J Alloy Compd 680:665–676

    Article  Google Scholar 

  12. Yang M, Li M, Wang L, Fu Y, Kim J, Weng L (2011) Cu6Sn5 morphology transition and its effect on mechanical properties of eutectic Sn–Ag solder joints. J Electron Mater 40:176–188

    Article  Google Scholar 

  13. Mohd Salleh MAA, McDonald SD, Yasuda H, Sugiyama A, Nogita K (2015) Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces. Scr Mater 100:17–20

    Article  Google Scholar 

  14. Yu HB, Sun Y, Alpay S, Aindow M (2016) Solidification microstructures in Ag3Sn–Cu3Sn pseudo-binary alloys. J Mater Sci 51:6474–6487. doi:10.1007/s10853-016-9947-y

    Article  Google Scholar 

  15. Xia Y, Xie X, Lu C (2006) Intermetallic compounds evolution between lead-free solder and cu-based lead frame alloys during isothermal aging. J Mater Sci 41:2359–2364. doi:10.1007/s10853-006-4501-y

    Article  Google Scholar 

  16. Li M, Li Z, Xiao Y, Wang C (2013) Rapid formation of Cu/Cu3Sn/Cu joints using ultrasonic bonding process at ambient temperature. Appl Phys Lett 102:094104

    Article  Google Scholar 

  17. Li Z, Li M, Xiao Y, Wang C (2014) Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves. Ultrason Sonochem 21:924–929

    Article  Google Scholar 

  18. Cheng HC, Yu CF, Chen WH (2012) Strain- and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation. J Mater Sci 47:3103–3114. doi:10.1007/s10853-011-6144-x

    Article  Google Scholar 

  19. Li J, Agyakwa P, Johnson C (2011) Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater 59:1198–1211

    Article  Google Scholar 

  20. Zhang R, Tian Y, Hang C, Liu B, Wang C (2013) Formation mechanism and orientation of Cu3Sn grains in Cu–Sn intermetallic compound joints. Mater Lett 110:137–140

    Article  Google Scholar 

  21. Hang C, Tian Y, Zhang R, Yang D (2013) Phase transformation and grain orientation of Cu–Sn intermetallic compounds during low temperature bonding process. J Mater Sci 24:3905–3913. doi:10.1007/s10854-013-1337-5

    Google Scholar 

  22. Ji H, Qiao Y, Li M (2015) Rapid formation of intermetallic joints through ultrasonic-assisted die bonding with Sn–0.7 Cu solder for high temperature packaging application. Scripta Mater 110:19–23

    Article  Google Scholar 

  23. Ma H, Kunwar A, Sun J, Guo B, Ma H (2015) In situ study on the increase of intermetallic compound thickness at anode of molten tin due to electromigration of copper. Scr Mater 107:88–91

    Article  Google Scholar 

  24. Gu Y, Shen P, Yang NN, Cao KZ (2014) Effects of direct current on the wetting behavior and interfacial morphology between molten Sn and Cu substrate. J Alloy Compd 586:80–86

    Article  Google Scholar 

  25. Liu C, Hu Y, Liu Y, Tseng H, Huang T, Lu C, Chuang Y, Cheng S (2013) Epitaxial Cu–Sn bulk crystals grown by electric current. Acta Mater 61:5713–5719

    Article  Google Scholar 

  26. Huang J, Tsai C, Lin Y, Kao C (2008) Pronounced electromigration of Cu in molten Sn-based solders. J Mater Res 23:250–257

    Article  Google Scholar 

  27. Huang ML, Zhou Q, Zhao N, Liu XY, Zhang ZJ (2014) Reverse polarity effect and cross-solder interaction in Cu/Sn–9Zn/Ni interconnect during liquid-solid electromigration. J Mater Sci 49:1755–1763. doi:10.1007/s10853-013-7862-z

    Article  Google Scholar 

  28. Zhou Y, Gorman P, Tan W, Ely K (2000) Weldability of thin sheet metals during small-scale resistance spot welding using an alternating-current power supply. J Electron Mater 29:1090–1099

    Article  Google Scholar 

  29. Tan W, Zhou Y, Kerr H, Lawson S (2004) A study of dynamic resistance during small scale resistance spot welding of thin Ni sheets. J Phys D Appl Phys 37:1998

    Article  Google Scholar 

  30. Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19

    Article  Google Scholar 

  31. Munir Z, Anselmi TU, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777. doi:10.1007/s10853-006-6555-2

    Article  Google Scholar 

  32. Ke JH, Chuang HY, Shih WL, Kao CR (2012) Mechanism for serrated cathode dissolution in Cu/Sn/Cu interconnect under electron current stressing. Acta Mater 60:2082–2090

    Article  Google Scholar 

  33. Liu C, Chen J, Chuang Y, Ke L, Wang S (2007) Electromigration-induced Kirkendall voids at the Cu/Cu3Sn interface in flip-chip Cu/Sn/Cu joints. Appl Phys Lett 90:2114

    Google Scholar 

  34. Wang YW, Lin YW, Kao CR (2009) Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Microelectron Reliab 49:248–252

    Article  Google Scholar 

  35. Knödler H (1957) Der strukturelle Zusammenhang zwischen γ-und ε-Phase im System Kupfer-Zinn. Acta Crystallogr 10:86–87

    Article  Google Scholar 

  36. Kim H, Tu K (1996) Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Phys Rev B 53:16027

    Article  Google Scholar 

  37. Zou HF, Yang HJ, Zhang ZF (2008) Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater 56:2649–2662

    Article  Google Scholar 

  38. Tian Y, Zhang R, Hang C, Niu L, Wang C (2014) Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0 Ag0.5 Cu solder joints on different Cu pads. Mater Charact 88:58–68

    Article  Google Scholar 

  39. Reed T, LaFleur W (1964) Constitutional supercooling in iodine vapor crystal growth. Appl Phys Lett 5:191–193

    Article  Google Scholar 

  40. Jackson KA (2004) Constitutional supercooling surface roughening. J Cryst Growth 264:519–529

    Article  Google Scholar 

  41. Ben JE, Garik P (1990) The formation of patterns in non-equilibrium growth. Nature 343:523–530

    Article  Google Scholar 

  42. Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Mater 1:428–437

    Article  Google Scholar 

  43. Cheng T (2000) The mechanism of grain refinement in TiAl alloys by boron addition-an alternative hypothesis. Intermetallics 8:29–37

    Article  Google Scholar 

  44. Xian JW, Belyakov SA, Britton TB, Gourlay CM (2015) Heterogeneous nucleation of Cu6Sn5 in Sn–Cu–Al solders. J Alloy Compd 619:345–355

    Article  Google Scholar 

  45. Zhao J, Cheng CQ, Qi L, Chi CY (2009) Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples. J Alloy Compd 473:382–388

    Article  Google Scholar 

  46. Pang HLJ, Tan KH, Shi XQ, Wang ZP (2001) Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging. Mat Sci Eng A-Struct 307:42–50

    Article  Google Scholar 

  47. Man HC, Zhao NQ (2006) Enhancing the adhesive bonding strength of NiTi shape memory alloys by laser gas nitriding and selective etching. Appl Surf Sci 253:1595–1600

    Article  Google Scholar 

  48. Man H, Zhao N, Cui Z (2005) Surface morphology of a laser surface nitrided and etched Ti-6Al-4 V alloy. Surf Coat Tech 192:341–346

    Article  Google Scholar 

  49. Mei Z, Sunwoo A, Morris J (1992) Analysis of low-temperature intermetallic growth in copper-tin diffusion couples. Metall Mater Trans A 23:857–864

    Article  Google Scholar 

  50. Lee HT, Chen MH, Jao HM, Liao TL (2003) Influence of interfacial intermetallic compound on fracture behavior of solder joints. Mat Sci Eng A-Struct 358:134–141

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. 51522503) and support from Program for New Century Excellent Talents in University (NCET-13-0175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Tian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Tian, Y., Feng, J. et al. Enhanced shear strength of Cu–Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process. J Mater Sci 52, 1943–1954 (2017). https://doi.org/10.1007/s10853-016-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0483-6

Keywords

Navigation