Skip to main content
Log in

Joint Effect of Small Additives of Carbon Nanoparticles of Different Morphologies on the Mechanical Characteristics of Cross-Linked Polyurethanes under Static and Dynamic Loads

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Influence of small additives of fullerene, graphene oxide, and their combinations in the ratio of 85 : 15 on the structure and mechanical properties of cross-linked polyurethanes under static and dynamic loads has been investigated. Nanocomposite structures have been studied by X-ray diffraction analysis and scanning electron microscopy. It is shown that the presence of carbon nanoparticles in the composite reduces its strength under both static and shock-wave loads. The synergistic effect of the mixture of carbon nanoparticles manifests itself as an increase in the elastic modulus by a factor of 1.25 in comparison with the initial polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S.-Y. Yang,  W.-N. Lin,  Y.-L. Huang,  H.-W. Tien, J.-Y. Wang, C.-C. M. Ma, S.-M. Li, and Y.-S. Wang, Carbon 49, 793 (2011). https://doi.org/10.1016/j.carbon.2010.10.014

    Article  Google Scholar 

  2. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis, and R. C. Haddon, Adv. Mater. 20, 4740 (2008). https://doi.org/10.1002/adma.200800401

    Article  Google Scholar 

  3. M. K. Shin, B. Lee, S. H. Kim, J. A. Lee, G. M. Spinks, S. Gambhir, G. G. Wallace, M. E. Kozlov, R. H. Baughman, and S. J. Kim, Nat. Commun. 3, 650 (2012). https://doi.org/10.1038/ncomms1661

    Article  ADS  Google Scholar 

  4. P. Xu, J. Loomis, B. King, and B. Panchapakesan, Nanotechnology 23, 315706 (2012). https://doi.org/10.1088/0957-4484/23/31/315706

    Article  ADS  Google Scholar 

  5. K. E. Prasad, B. Das, U. Maitra, U. Ramamurty, and C. N. Rao, Proc. Natl. Acad. Sci. U. S. A. 106, 13186 (2009). https://doi.org/10.1073/pnas.0905844106

    Article  ADS  Google Scholar 

  6. Y. Feng, M. Qin, H. Guo, K. Yoshino, and W. Feng, ACS Appl. Mater. Interfaces 5, 10882 (2013). https://doi.org/10.1021/am403071k

    Article  Google Scholar 

  7. L. Yue, G. Pircheraghi, S. A. Monemian, and I. Manas-Zloczower, Carbon 78, 268 (2014). https://doi.org/10.1016/j.carbon.2014.07.003

    Article  Google Scholar 

  8. Y. Li, T. Yang, T. Yu, L. Zheng, and K. Liao, J. Mater. Chem. 21, 10844 (2011). https://doi.org/10.1039/c1jm11359c

    Article  Google Scholar 

  9. D. Ponnamma, K. K. Sadasivuni, M. Strankowski, Q. Guo, and S. Thomas, Soft Matter 9, 10343 (2013). https://doi.org/10.1039/C3SM51978C

    Article  ADS  Google Scholar 

  10. S. Jin, K. Li, and J. Li, Polymers 10, 270 (2018). https://doi.org/10.3390/polym10030270

    Article  Google Scholar 

  11. P.-N. Wang, T.-H. Hsieh, C.-L. Chiang, and M.-Y. Shen, J. Nanomater. 2015, 838032 (2015). https://doi.org/10.1155/2015/838032

  12. D. Yuan, D. Pedrazzoli, and I. Manas-Zloczower, Int. Polym. Process. 31, 554 (2016). https://doi.org/10.3139/217.3231

    Article  Google Scholar 

  13. E. Badamshina, Y. Estrin, and M. Gafurova, J. Mater. Chem. A 1, 6509 (2013). https://doi.org/10.1039/C3TA10204A

    Article  Google Scholar 

  14. U. Tayfun, Y. Kanbur, U. Abaci, H. Y. Guney, and E. Bayramli, Composites, Part B 80, 101 (2015). https://doi.org/10.1016/j.compositesb.2015.05.013

    Article  Google Scholar 

  15. W. Huang, Z. Li, X. Chen, P. Tian, J. Lu, Z. Zhou, R. Huang, D. Hui, L. He, C. Zhang, and X. Wang, Composites, Part B 62, 126 (2014). https://doi.org/10.1016/j.compositesb.2014.02.026

    Article  Google Scholar 

  16. F. Avilés, A. May-Pat, M. A. López-Manchado, R. Verdejo, A. Bachmatiuk, and M. H. Rümmeli, Eur. Polym. J. 99, 394 (2018). https://doi.org/10.1016/j.eurpolymj.2017.12.038

    Article  Google Scholar 

  17. A. Heydari, H. Sheibani, V. Hronský, I. Janigová, M. Šlouf, P. Šiffalovič, and I. Chodák, Chem. Pap. 72, 1299 (2018). https://doi.org/10.1007/s11696-017-0371-9

    Article  Google Scholar 

  18. A. Kumar, K. M. Rao, and S. S. Han, Carbohydr. Polym. 193, 228 (2018). https://doi.org/10.1016/j.carbpol.2018.04.004

    Article  Google Scholar 

  19. Ya. I. Estrin, E. R. Badamshina, A. A. Grishchuk, G. S. Kulagina, V. A. Lesnichaya, Yu. A. Ol’khov, A. G. Ryabenko, and S. N. Sul’yanov, Polym. Sci. Ser. A 54, 290 (2012). https://doi.org/10.1134/S0965545X12040037

    Article  Google Scholar 

  20. Y. M. Shulga, S. A. Baskakov, V. A. Smirnov, N. Y. Shulga, K. G. Belay, and G. L. Gutsev, J. Power Sources 245, 33 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.094

    Article  ADS  Google Scholar 

  21. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, A. V. Utkin, Spall Fracture (Springer, New York, 2003).

    Google Scholar 

  22. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972). https://doi.org/10.1063/1.1660986

    Article  ADS  Google Scholar 

  23. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. of California Press, Berkeley, 1980).

    Google Scholar 

  24. X. Zhu, C. Melian, Q. Dou, K. Peter, D. E. Demco, M. Moller, D. V. Anokhin, J.-M. Le Meins, and D. A. Ivanov, Macromolecules 43, 6067 (2010). https://doi.org/10.1021/ma1007573

    Article  ADS  Google Scholar 

  25. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).

    Book  Google Scholar 

  26. A. E. Tarasov, E. R. Badamshina, D. V. Anokhin, S. V. Razorenov, and G. S. Vakorina, Tech. Phys. 63, 32 (2018).

    Article  Google Scholar 

Download references

Funding

This study was performed within state contracts nos. 01201361852, 01201361856, 01201055317, and 01201055328 and supported by the programs of the Presidium of the Russian Academy of Sciences nos. 1P and 32P and the Ministry of Education and Science of the Russian Federation (project no. 14.578.21.0190, identifier RFMEFI57816X0190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Garkushin.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkushin, G.V., Razorenov, S.V., Tarasov, A.E. et al. Joint Effect of Small Additives of Carbon Nanoparticles of Different Morphologies on the Mechanical Characteristics of Cross-Linked Polyurethanes under Static and Dynamic Loads. Tech. Phys. 64, 865–872 (2019). https://doi.org/10.1134/S1063784219060070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060070

Navigation