Skip to main content
Log in

Influence of Carbon Nanotubes on the Mechanical Properties of Cross-Linked Polyurethanes

  • Published:
Materials Science Aims and scope

By the methods of electron microscopy, dynamic mechanical analysis, and transmission of ultrasound, we study the principal mechanical characteristics of systems based on cross-linked polyurethanes and carbon nanotubes. It is shown that they exhibit the percolation behavior and, in the region of percolation transition (0.4–1%), their mechanical characteristics undergo abrupt changes. In this case, the decisive influence is exerted by the aggregates of carbon nanotubes. As the percolation threshold is reached, we observe the formation of a branched network of carbon nanotubes and the tensile strength, the modulus of elasticity, and the velocity of ultrasound significantly increase in the investigated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotisa, “Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties,” Progress Polymer Sci., 35, 357–401 (2010).

    Article  Google Scholar 

  2. Z. Chen, “Nanotubes for nanoelectronics,” in: H. S. Nalwa (editor), Encyclopedia of Nanoscience and Nanotechnology, Vol. 7, American Scientific Publishers (2004), pp. 919–942.

  3. J. Zhang, M. Mine, D. Zhu, and M. Matsuo, “Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold,” Carbon, 47, No. 5, 1311–1320 (2009).

    Article  Google Scholar 

  4. E. A. Lysenkov, Y. V. Yakovlev, and V. V. Klepko, “Percolative properties of systems based on polypropylene glycol and carbon nanotubes,” Ukr. J. Phys., 58, No. 4, 378–384 (2013).

    Article  Google Scholar 

  5. Z. Wirpsza, Polyurethanes, E. Horwood, London (1997).

    Google Scholar 

  6. K.-H. Hsieh, D.-C. Liao, and Y.-C. Chern, “Thermoplastic polyurethanes,” in: Handbook of Thermoplastics, Van Nostrand Reinhold, New York (1997), pp. 381–395.

  7. D. K. Chattopadhyay and D. C. Webster, “Thermal stability and flame retardancy of polyurethanes,” Progress Polymer Sci., 34, No. 10, 1068–1133 (2009).

    Article  Google Scholar 

  8. R. Jayakumar, S. Nanjundan, and M. Prabaharan, “Metal-containing polyurethanes, poly(urethane–urea)s and poly(urethane–ether)s: a review,” React. Funct. Polymer, 66, No. 3, 299–314 (2006).

    Article  Google Scholar 

  9. I. Francolini, L. D’Ilario, E. Guaglianone, G. Donellib, A. Martinellia, and A. Piozzia, “Polyurethane anionomers containing metal ions with antimicrobial properties: thermal, mechanical, and biological characterization,” Acta Biomater., 6, No. 9, 3482–3490 (2010).

    Article  Google Scholar 

  10. W. Chen and X. Tao, “Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane,” Macromol. Rapid Comm., 26, 1763–1767 (2005).

    Article  Google Scholar 

  11. H. Xia and M. Song, “Preparation and characterization of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposite,” J. Mater. Chem., 16, 1843–1851 (2006).

    Article  Google Scholar 

  12. P. C. Ma, B. Z. Tang, and J.-K. Kim, “Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites,” Carbon, 46, 1497–1505 (2008).

    Article  Google Scholar 

  13. C.-X. Zhao, W.-D. Zhang, and D.-C. Sun, “Preparation and mechanical properties of waterborne polyurethane/carbon nanotube composites,” Polymer Compos., 30, 649–654 (2009).

    Article  Google Scholar 

  14. S. Guo, C. Zhang, W. Wand, T. Liu, W. C. Tjiu, C. He, and W. D. Zhang, “Preparation and characterization of polyurethane/multiwalled carbon nanotube composites,” Polymer Polymer Compos., 16, No. 8, 471–477 (2008).

    Google Scholar 

  15. H. Xia and M. Song, “Preparation and characterization of polyurethane–carbon nanotubes composites,” Soft Mater, 1, 386–394 (2005).

    Article  Google Scholar 

  16. K. Sasikumar, N. R. Manoj, R. Ramesh, and T. Mukundan, “Carbon nanotube-polyurethane nanocomposites for structural vibration damping,” Int. J. Nanotechnol., 9, No. 10-11-12, 1061–1071 (2012).

  17. Isocyanates. Method for the Determination of the Mass Fraction of Isocyanate Groups. Specifications [in Russian], Dzerzhinsk Department of the State Institute of Nitric Industry (1989).

  18. GOST 14236-81. Polymeric Films. Method for Tensile Testing [in Russian], Goskomstandart, Moscow (1981).

  19. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites,” Carbon, 44, 1624–1652 (2006).

    Article  Google Scholar 

  20. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor & Francis, London (1994).

    Google Scholar 

  21. J. Kwon and H. Kim, “Preparation and properties of acid-treated multiwalled carbon nanotube/ waterborne polyurethane nanocomposite,” J. Appl. Polymer Sci., 96, 595–604 (2005).

    Article  Google Scholar 

  22. T. X. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, “Morphology and mechanical properties of multiwalled carbon nanotubes reinforced Nylon-6 composites,” Macromolecules, 37, 7214–7222 (2004).

    Article  Google Scholar 

  23. V. V. Klepko, B. B. Kolupaev, E. A. Lysenkov, and M. O. Voloshyn, “Viscoelastic properties of filled polyethylene glycol in the megahertz frequency band,” Fiz.-Khim. Mekh. Mater., 47, No. 1, 18–23 (2011); English translation: Mater. Sci., 47, No. 1, 14–20 (2011).

  24. H. P. Schriemer, N. G. Pachet, and J. H. Page, “Ultrasonic investigation of the vibration modes of a sintered glass-bead percolation system,” Wave Random Media, 6, 361–386 (1996).

    Article  Google Scholar 

  25. S. Roux and E. Guyon, “Transport exponents in percolation,” in: E. Stanley and N. Ostrovsky (editors), On Growth and Form, Martinus Nijhoff, Dordrecht (1986), pp. 273–277.

    Chapter  Google Scholar 

  26. A. Alexander and R. Orbach, “Density of states on fractals: ‘fractons’,” J. Physique, 43, 625–631 (1982).

    Article  Google Scholar 

Download references

The authors express their deep gratitude to the stuff of the “Thermophysical Investigations and Analysis” Center of Collective Use of the Research Equipment (CCURE) at the Institute of Chemistry of High-Molecular Compounds of the Ukrainian National Academy of Sciences for carrying out the required thermophysical investigations by the method of DMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Е. А. Lysenkov.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 53, No. 1, pp. 18–24, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenkov, Е.А., Haholkina, Z.О., Lobko, E.V. et al. Influence of Carbon Nanotubes on the Mechanical Properties of Cross-Linked Polyurethanes. Mater Sci 53, 14–21 (2017). https://doi.org/10.1007/s11003-017-0037-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-017-0037-3

Keywords

Navigation