Skip to main content
Log in

Effect of Chemical Structure and Geometry of Carbon Nanotubes on Electrical and Mechanical Properties of Nanocomposites Based on Cross-Linked Polyurethane

  • Published:
Theoretical and Experimental Chemistry Aims and scope

It was found that increase in the content of carbon nanotubes with various chemical structures and geometry in composite materials based on cross-linked polyurethanes leads to increase of the conductivity and tensile strength, accompanied by decrease of their elongation at break. Systems with carbon nanotubes of largest external diameter have the highest conductivity and tensile strength over the whole range of concentrations. It was shown that the presence of nitrogen atoms at the nodes of the nanotubes reduces the conductivity and has little effect on the tensile strength of the polyurethane composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. B. Romero, M. Carrard, W. Heer, and L. Zuppiroli, Adv. Mater., 8, No. 11, 899-902 (1996).

    Article  CAS  Google Scholar 

  2. S. A. Curran, P. M. Ajayan, W. J. Blau, et al., Adv. Mater., 10, No. 14, 1091-1093 (1998).

    Article  CAS  Google Scholar 

  3. A. Celzard, E. McRae, C. Deleuze, et al., Phys. Rev. B, 53, No. 10, 6209-6214 (1996).

    Article  CAS  Google Scholar 

  4. L. Bokobza, Polymer, 48, No. 17, 4907-4920 (2007).

    Article  CAS  Google Scholar 

  5. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868-2879 (2000).

    Article  CAS  Google Scholar 

  6. W. Jingrong, X. Haiping, Y. Dandan, and W. Yihua, Fibers Polymers, 14, No. 4, 571-577 (2013).

    Article  Google Scholar 

  7. F. H. Gojny, M. G. Wichmann, B. Fiedler, et al., Polymer, 47, No. 6, 2036-2045 (2006).

    Article  CAS  Google Scholar 

  8. J. B. Bai and A. Allaoui, Composites A, 34, No. 8, 689-694 (2003).

    Article  Google Scholar 

  9. J. Cho, Composites A, 39, No. 12, 1844-1850 (2008).

    Article  Google Scholar 

  10. M. Morcom, K. Atkinson, and G. P. Simon, Polymer, 51, No. 15, 3540-3550 (2010).

    Article  CAS  Google Scholar 

  11. L. N. Liu, A. J. Gu, Z. P. Fang, et al., Composites A, 38, No. 9, 1957-1964 (2007).

    Article  Google Scholar 

  12. S. Guo, Ch. Zhang, W. Wang, et al., Polym. Polym. Compos., 16, No. 8, 423-430 (2008).

    Google Scholar 

  13. H. Koerner, W. Liu, M. Alexander, et al., Polymer, 46, No. 12, 4405-4420 (2005).

    Article  CAS  Google Scholar 

  14. N. V. Lemesh and A. I. Tripolsky, Teor. Éksp. Khim., 50, No. 5, 295-298 (2014). [Theor. Exp. Chem., 50, No. 5, 299-303 (2014) (English translation).]

  15. J. Z. Kovacs, B. S. Velagala, K. Schulte, and W. Bauhofer, Compos. Sci. Technol., 67, No. 5, 922-928 (2007).

    Article  CAS  Google Scholar 

  16. GOST 14236-81, Polymer Films. Tensile Test Method [in Russian], Gos. Kom. po Standartam, Moscow (1981).

  17. M. Paradise and T. Goswami, Mater. Design, 28, No. 5, 1477-1489 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. O. Gagolkina.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 52, No. 1, pp. 14-18, January-February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagolkina, Z.O., Lemesh, N.V., Lobko, E.V. et al. Effect of Chemical Structure and Geometry of Carbon Nanotubes on Electrical and Mechanical Properties of Nanocomposites Based on Cross-Linked Polyurethane. Theor Exp Chem 52, 16–20 (2016). https://doi.org/10.1007/s11237-016-9444-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-016-9444-z

Key words

Navigation