Skip to main content
Log in

Filling of a Plane Slit Volume with a Glow Discharge in a Transverse Magnetic Field and Its Effect on the Discharge Contraction

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We consider a dc glow discharge in a plane slit volume with electrodes in the slit plane in a magnetic field transverse to the current, which has been studied experimentally. As in the experiment, the discharge is artificially confined at one of the dielectric boundaries of the volume and propagates to the opposite dielectric boundary until it is stabilized. It is shown using a 2D calculation of the nonstationary process that the discharge in a magnetic field occupies a noticeably larger volume (with a lower current density at the electrodes) than in zero magnetic field. The effect of the magnetic field is also manifested in that it hampers the contraction of the discharge, substantially elevating the threshold current of the diffuse discharge. The discharge contraction is calculated in the approximation of a homogeneous positive column along the current right to the attainment of the stationary state. In calculations with a magnetic field, hysteresis appears in transitions from the diffuse to the contracted state and back.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Macken, in Proc. Int. Conf. on Laser Advanced Materials Processing, Nagaoka, Niigata, Japan, 1992, Vol. 1, p. 67.

    Google Scholar 

  2. N. A. Yatsenko and I. V. Masyukov, Pis’ma Zh. Tekh. Fiz. 19 (15), 17 (1993).

    Google Scholar 

  3. I. V. Masyukov and V. I. Myshenkov, J. Phys. D 27, 2666 (1994). doi 10.1088/0022-3727/27/12/032

    Article  ADS  Google Scholar 

  4. S. T. Surzhikov and J. S. Shang, J. Comput. Phys. 199, 437 (2004). doi 10.1016/j.jcp.2004.02.019

    Article  ADS  Google Scholar 

  5. S. T. Surzhikov, Physical Mechanics of Gas Discharges (Mosk. Gos. Tekh. Univ., Moscow, 2006).

    Google Scholar 

  6. S. T. Surzhikov, Computational Physics of Electric Discharges in Gas Flows (Walter de Gruyter, 2013).

    MATH  Google Scholar 

  7. R. J. Willis, H. J. J. Seguin, C. E. Capjack, and S. K. Nikumb, J. Appl. Phys. 62, 3616 (1987). doi 10.1063/1.339264

    Article  ADS  Google Scholar 

  8. E. Ose, W. Triebel, and A. Schumann, Contrib. Plasma Phys. 34, 649 (1994). doi 10.1002/ctpp.2150340504

    Article  ADS  Google Scholar 

  9. V. S. Golubev, Yu. N. Krivenko, P. G. Leonov, and V. B. Flerov, Pis’ma Zh. Tekh. Fiz. 14, 1522 (1988).

    Google Scholar 

  10. A. K. Nath, R. S. Chaubey, U. V. S. RamKumar, P. Chowdhary, M. Kumar, and L. Abhinandan, IEEE J. Quantum Electron. 27, 476 (1991). doi 10.1109/3.81350

    Article  ADS  Google Scholar 

  11. F. Sohbatzadeh, H. Tavassoli, and H. Latifi, Phys. Plasmas 11, 3904 (2004). doi 10.1063/1.1767833

    Article  ADS  Google Scholar 

  12. Yu. P. Raizer, Gas Discharge Physics, 3rd ed. (Intellekt, Dolgorpudny, 2009).

    Google Scholar 

  13. L. Tonks, Phys. Rev. 51, 744 (1937). doi 10.1103/Phys-Rev.51.744

    Article  ADS  Google Scholar 

  14. L. Tonks and W. P. Allis, Phys. Rev. 52, 710 (1937). doi 10.1103/PhysRev.52.710

    Article  ADS  Google Scholar 

  15. Yu. P. Raizer and S. T. Surzhikov, High Temp. 28, 324 (1990).

    Google Scholar 

  16. V. L. Ginzburg and A. V. Gurevich, Sov. Phys. Usp. 3, 115 (1960). doi 10.1070/PU1960v003n01ABEH003261

    Article  ADS  Google Scholar 

  17. V. Vahedi and G. Dipeso, J. Comput. Phys. 131, 149 (1997). doi 10.1006/jcph.1996.5591

    Article  ADS  Google Scholar 

  18. Yu. P. Raizer and S. T. Surzhikov, High Temp. 28, 304 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mokrov.

Additional information

Original Russian Text © M.S. Mokrov, Yu.P. Raizer, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 832–842.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrov, M.S., Raizer, Y.P. Filling of a Plane Slit Volume with a Glow Discharge in a Transverse Magnetic Field and Its Effect on the Discharge Contraction. Tech. Phys. 63, 806–816 (2018). https://doi.org/10.1134/S1063784218060154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218060154

Navigation