Skip to main content
Log in

Effect of Accelerated Electrons on the Glow Structure of Nanosecond Diffuse Discharge in the Rod–Plane Air Gap

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A diffuse discharge in a rod (cathode)–plane gap with an interelectrode spacing of 10 cm is studied in air at atmospheric pressure. The cathode voltage is 370–390 kV at a pulse FWHM of about 70 ns. It is shown that a pulse-to-pulse variation in delay time of the discharge formation in an interval of 3–15 ns leads to variations in the discharge current and X-ray pulse amplitude in intervals of 100–200 A and 20–250 relative units, respectively. A relationship of the amplitude of the X-ray pulse and structural parameters of the discharge glow is obtained. It is shown that fast electrons with energies of less 30 keV that are accelerated by strong electric field in the vicinity of the cathode play the key role in the formation of the longitudinal structure of glow at relatively large delay times of the discharge formation. Fast electrons ionize peripheral regions of the discharge, increase its cross section, and, hence, provide a decrease in the current density, specific energy deposition, and radiation intensity at a distance from the cathode that corresponds to electron path in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. I. Pavlovskii, M. A. Voinov, V. V. Gorokhov, V. I. Karelin, and P. B. Repin, Zh. Tekh. Fiz. 60, 64 (1990).

    Google Scholar 

  2. A. G. Rep’ev and P. B. Repin, Plasma Phys. Rep. 32, 72 (2006).

    Article  ADS  Google Scholar 

  3. A. G. Rep’ev, P. B. Repin, and V. S. Pokrovskii, Tech. Phys. 52, 52 (2006).

    Article  Google Scholar 

  4. A. G. Rep’ev and P. B. Repin, Tech. Phys. 53, 73 (2008).

    Article  Google Scholar 

  5. Generation of Runaway Electron Beams and X-Rays in High Pressure Gases, Vol. 1: Techniques and Measurements, Ed. by V. F. Tarasenko (Nova Sci., New York, 2016).

    Google Scholar 

  6. G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, and K. Yan, J. Phys. D: Appl. Phys. 41, 234001 (2008).

    Article  ADS  Google Scholar 

  7. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, P. B. Repin, A. G. Rep’ev, and A. A. Trenkin, in Generation of Runaway Electron Beams and X-Rays in High Pressure Gases, Vol. 1: Techniques and Measurements, Ed. by V. F. Tarasenko (Nova Sci., New York, 2016), p. 193.

  8. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, A. I. Pavlovskii, and P. B. Repin, Sov. J. Quantum Electron. 21, 806 (1991).

    Article  ADS  Google Scholar 

  9. S. N. Buranov, S. V. Voevodin, I. A. Voevodina, P. S. Zubeev, V. I. Karelin, P. B. Repin, V. D. Selemir, and S. Yu. Usacheva, High Temp. 43, 361 (2005).

    Article  Google Scholar 

  10. P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, J. Phys. D: Appl. Phys. 42, 175202 (2009).

    Article  ADS  Google Scholar 

  11. B. G. Kudasov, S. S. Pavlov, and V. A. Tanankin, in Digest of Technical Papers: 11th IEEE International Pulsed Power Conference, Baltimore, Maryland USA, June 29–July 2,1997, Ed. by G. Cooperstein and I. Vitkovitsky (IEEE, 1998), p. 1572.

  12. http://www.eljentechnology.com.

  13. M. L. Baranochnikov, Radiation Sensors and Detectors. Handbook (DMK Press, Moscow, 2017).

    Google Scholar 

  14. H. A. Bethe and J. Ashkin, in Experimental Nuclear Physics, Ed. by E. Segré (Wiley, New York, 1953), Vol. 1, p. 166.

    Google Scholar 

  15. A. A. Moiseev and V. I. Ivanov, Dosimetry and Radiation Hygiene. Handbook (Energoatomizdat, Moscow, 1984).

    Google Scholar 

  16. D. E. Callen, J. H. Hubbel, and L. Kissel, EPDL97: The Evaluated Photon Data Library, ’97 Version (Lawrence Livermore National Lab., 1997).

    Book  Google Scholar 

  17. F. N. Kharadzha, X-Ray Technology Basics (GEI, Moscow, 1956).

    Google Scholar 

  18. Yu. I. Bychkov, Yu. D. Korolev, G. A. Mesyats, V. V. Osipov, V. V. Ryzhov, and V. F. Tarasenko, Injection Gas Electronics (Nauka, Novosibirsk, 1982).

    Google Scholar 

  19. N. G. Preobrazhenskii and V. V. Pikalov, Unstable Plasma Diagnostics Problems (Nauka, Novosibirsk, 1982).

    Google Scholar 

  20. L. Huxley and P. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).

    Google Scholar 

  21. Yu. P. Raizer, Gas Discharge Physics (Intellekt, Dolgoprudny, 2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Repin.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovskii, V.S., Repin, P.B. & Trushkina, A.N. Effect of Accelerated Electrons on the Glow Structure of Nanosecond Diffuse Discharge in the Rod–Plane Air Gap. Tech. Phys. 65, 182–189 (2020). https://doi.org/10.1134/S1063784220020206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220020206

Navigation