Skip to main content
Log in

Coaxial (tubular) glow discharge in electronegative gases

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The positive-column plasma of a low- and medium-pressure electronegative glow discharge initiated in the gap between two coaxial cylindrical tubes has been considered (the current is directed along the tube axis). It is assumed that the gas mixture contains halogens, and ion diffusion is not negligibly weak. It is found that the coaxial discharge is characterized by plasma separation into three coaxial regions with different compositions in the direction transverse to the current. It has been shown that the ionization and excitation frequencies of atoms are higher than in the purely cylindrical case, even for a small (0.05–0.15) ratio of the radii of the inner and outer walls. An asymptotic analysis of the continuity equations yields analytic expressions that make it possible to rapidly and easily estimate the geometrical parameters of the spatial distributions of charge particle concentrations, as well as energy parameters of the plasma for the radii ratio that exceed 0.3. The conditions for the applicability of analytic relations and their accuracy are established from a comparison of the results of analytic and numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Tsendin, Sov. Phys. Tech. Phys. 34, 11 (1989).

    Google Scholar 

  2. V. A. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma (Taylor, London–New York, 2001).

    Google Scholar 

  3. A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Physics of Glowing Discharge (Lan’, St. Petersburg, 2010).

    Google Scholar 

  4. V. N. Volynets, A. V. Lukyanova, A. T. Rakhimov, et al., J. Phys. D: Appl. Phys. 26, 647 (1993).

    Article  ADS  Google Scholar 

  5. R. N. Franklin, P. G. Daniels, and J. Snell, J. Phys. D: Appl. Phys. 26, 1638 (1993).

    Article  ADS  Google Scholar 

  6. R. N. Franklin and J. Snell, J. Phys. D: Appl. Phys. 27, 2102 (1994).

    Article  ADS  Google Scholar 

  7. E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, et al., Tech. Phys. 48, 1151 (2003).

    Article  Google Scholar 

  8. A. P. Golovitskii and L. D. Tsendin, Tech. Phys. 59, 353 (2014).

    Article  Google Scholar 

  9. A. P. Golovitskii, Tech. Phys. 59, 1599 (2014).

    Article  Google Scholar 

  10. A. N. Panchenko, V. S. Skakun, E. A. Sosnin, et al., Tech. Phys. Lett. 21, 851 (1995).

    ADS  Google Scholar 

  11. M. I. Lomaev, A. N. Panchenko, V. S. Skakun, et al., Laser Part. Beams 15, 339 (1997).

    Article  ADS  Google Scholar 

  12. A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Opt. Commun. 161, 249 (1999).

    Article  ADS  Google Scholar 

  13. G. L. Rogoff, J. M. Kramer, and R. B. Piejak, IEEE Trans. Plasma Sci. PS-14 (2), 103 (1986).

    Article  ADS  Google Scholar 

  14. A. P. Golovitskii, in Proceedings of the All-Russia Conference on Physics of Low-Temperature Plasma, Kazan’, 2014, Vol. 1, pp. 65–69.

    Google Scholar 

  15. A. P. Golovitskii, Nauchno-Tekh. Vedomosti St.-Peterb. Politekhn. Univ., Fiz.-Mat. Nauki, No. 1 (213), 69 (2015).

    Google Scholar 

  16. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1976).

    Google Scholar 

  17. A. P. Golovitskii, Tech. Phys. Lett. 24, 233 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Golovitskii.

Additional information

Original Russian Text © A.P. Golovitskii, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 7, pp. 38–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovitskii, A.P. Coaxial (tubular) glow discharge in electronegative gases. Tech. Phys. 61, 995–1003 (2016). https://doi.org/10.1134/S1063784216070136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216070136

Navigation