Skip to main content
Log in

Energy Characteristics of Small Metal Clusters Containing Vacancies

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Self-consistent calculations of spatial distributions of electrons, potentials, and energies of dissociation, cohesion, vacancy formation, and electron attachment, as well as the ionization potential of solid Al N , Na N clusters (N ≥ 254), and clusters containing a vacancy (N ≥ 12) have been performed using a model of stable jellium. The contribution of a monovacancy to the energy of the cluster, the size dependences of the characteristics, and their asymptotic forms have been considered. The calculations have been performed on the SKIT-3 cluster at the Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine (Rpeak = 7.4 Tflops).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Frenkel’, Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, Leningrad, 1959).

    MATH  Google Scholar 

  2. A. Safaei, Philos. Mag. 91, 1509 (2011).

    Article  ADS  Google Scholar 

  3. W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, J. Chem. Phys. 136, 234704 (2012).

    Article  ADS  Google Scholar 

  4. J. Chandra and K. Kholiya, Mod. Phys. Lett. B 29, 1550025 (2015).

    Article  ADS  Google Scholar 

  5. L. A. Bulavin, O. Yu. Aktan, and Yu. F. Zabashta, Phys. Solid State 52, 712 (2010).

    Article  Google Scholar 

  6. M. N. Magomedov, Tech. Phys. 61, 730 (2016).

    Article  Google Scholar 

  7. W. Qi, Acc. Chem. Res. 49, 1587 (2016).

    Article  Google Scholar 

  8. G. A. Breaux, C. M. Neal, B. Cao, and M. F. Jarrold, Phys. Rev. Lett. 94, 173401 (2005).

    Article  ADS  Google Scholar 

  9. C. Hock, C. Bartels, S. Strassburg, M. Schmidt, H. Haberland, B. von Issendorff, and A. Aguado, Phys. Rev. Lett. 102, 043401 (2009).

    Article  ADS  Google Scholar 

  10. A. K. Starace, B. Cao, O. H. Judd, I. Bhattacharyya, and M. F. Jarrold, J. Chem. Phys. 132, 034302 (2010).

    Article  ADS  Google Scholar 

  11. S. Zamith, P. Labastie, F. Chirot, and J.-M. L’Hermite, J. Chem. Phys. 133, 154501 (2010).

    Article  ADS  Google Scholar 

  12. C. C. Yang and S. Li, Phys. Rev. B 75, 165413 (2007).

    Article  ADS  Google Scholar 

  13. S. C. Hendy, Nanotecnology 18, 175703 (2007).

    Article  ADS  Google Scholar 

  14. G. Guisbiers, Nanoscale Res. Lett. 5, 1132 (2010).

    Article  ADS  Google Scholar 

  15. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    Article  ADS  Google Scholar 

  16. A. Vieira, M. B. Torres, C. Fiolhais, and L. C. Balbas, J. Phys. B 30, 3583 (1997).

    Article  ADS  Google Scholar 

  17. A. Aguado and J. M. Lopez, J. Chem. Phys. 130, 064704 (2009).

    Article  ADS  Google Scholar 

  18. J. P. Perdew, Prog. Surf. Sci. 48, 245 (1995).

    Article  ADS  Google Scholar 

  19. A. V. Babich and V. V. Pogosov, Surf. Sci. 640, 210 (2010).

    Article  ADS  Google Scholar 

  20. O. Kostko, PhD Thesis (Univ. of Freiburg, Freiburg, 2007).

    Google Scholar 

  21. A. Halder and V. V. Kresin, J. Chem. Phys. 143, 164313 (2015).

    Article  ADS  Google Scholar 

  22. A. V. Babich, V. V. Pogosov, and V. I. Reva, Tech. Phys. Lett. 42, 1027 (2016).

    Article  ADS  Google Scholar 

  23. V. V. Pogosov, Solid State Commun. 89, 1017 (1994).

    Article  ADS  Google Scholar 

  24. C. Brechignac, Ph. Cahuzac, J. Leygnier, and J. Weiner, J. Chem. Phys. 90, 1492 (1989).

    Article  ADS  Google Scholar 

  25. U. Ray, M. F. Jarrold, J. E. Bower, and J. S. Kraus, J. Chem. Phys. 91, 2912 (1989).

    Article  ADS  Google Scholar 

  26. P. Ziesche, J. P. Perdew, and C. Fiolhais, Phys. Rev. B 49, 7916 (1994).

    Article  ADS  Google Scholar 

  27. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Article  ADS  Google Scholar 

  28. A. V. Babich, P. V. Vakula, and V. V. Pogosov, Phys. Solid State 56, 873 (2014).

    Article  ADS  Google Scholar 

  29. H. Delavari, H. R. Madaah Hosseinia, and A. Simchia, Phys. B 406, 3777 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pogosov.

Additional information

Original Russian Text © V.I. Reva, V.V. Pogosov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 63, No. 2, pp. 183–193.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reva, V.I., Pogosov, V.V. Energy Characteristics of Small Metal Clusters Containing Vacancies. Tech. Phys. 63, 175–185 (2018). https://doi.org/10.1134/S1063784218020251

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218020251

Navigation