Skip to main content
Log in

On the calculation of the energies of dissociation, cohesion, vacancy formation, electron attachment, and the ionization potential of small metallic clusters containing a monovacancy

  • Theory of Metals
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In terms of the model of stable jellium, self-consistent calculations of spatial distributions of electrons and potentials, as well as of energies of dissociation, cohesion, vacancy formation, electron attachment, and ionization potentials of solid clusters of Mg N , Li N (with N ≤ 254 ) and of clusters containing a vacancy (N ≥ 12) have been performed. The contribution of a monovacancy to the energy of the cluster and size dependences of its characteristics and of asymptotics have been discussed. Calculations have been performed using a SKIT-3 cluster at Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine (Rpeak = 7.4 Tflops).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Frenkel’, Kinetic Theory of Liquids (AN SSSR, Leningrad, 1959; Clarendon, Oxfor, 1946; Dover Publ., 1955).

    Google Scholar 

  2. A. V. Babich, V. V. Pogosov, and V. I. Reva, “Calculations of the probability of positron trapping by a vacancy in a metal and the estimation of the vacancy contribution to the work function of electrons and positrons,” Phys. Met. Metallogr. 117, 205–213 (2016).

    Article  Google Scholar 

  3. Ph. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).

    Article  Google Scholar 

  4. A. Safaei, “Cohesive energy and physical properties of nanocrystals,” Philos. Mag. 91, 1509–1539 (2011).

    Article  Google Scholar 

  5. W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature of gold nanoparticles,” J. Chem. Phys. 136, 234704 (2012).

    Article  Google Scholar 

  6. J. Chandra and K. Kholiyay, “A theoretical model to study melting of metals under pressure,” Mod. Phys. Lett., B 29, 1550161 (2015).

    Article  Google Scholar 

  7. G. A. Breaux, C. M. Neal, B. Cao, and M. F. Jarrold, “Melting, premelting, and structural transitions in sizeselected aluminum clusters with around 55 atoms,” Phys. Rev. Lett. 94, 173401 (2005).

    Article  Google Scholar 

  8. C. Hock, C. Bartels, S. Straßburg, M. Schmidt, H. Haberland, B. von Issendorff, and A. Aguado, “Premelting and postmelting in clusters,” Phys. Rev. Lett. 102, 043401 (2009).

    Article  Google Scholar 

  9. A. K. Starace, B. Cao, O. H. Judd, I. Bhattacharyya, and M. F. Jarrold, “Melting of size-selected aluminum nanoclusters with 84–128 Atoms,” J. Chem. Phys. 132, 034302 (2010).

    Article  Google Scholar 

  10. S. Zamith, P. Labastie, F. Chirot, and J.-M. L’Hermite, “Two-step melting of Na41 +,” J. Chem. Phys. 133, 154501 (2010).

    Article  Google Scholar 

  11. G. N. Makarov, “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles,” Phys.-Usp. 53, 179–198 (2010).

    Article  Google Scholar 

  12. R. S. Berry and B. M. Smirnov, “Modeling of configurational transitions in atomic systems,” Phys. Rep. 527, 973–998 (2013).

    Article  Google Scholar 

  13. C. Bréchignac, H. Busch, Ph. Cahuzac, and J. Leygnier, “Dissociation pathways and binding energies of lithium clusters from evaporation experiments,” J. Chem. Phys. 101, 6992–7002 (1994).

    Article  Google Scholar 

  14. Ph. Dugourd, D. Rayane, P. Labastie, B. Pintar, J. Chevaleyre, M. Broyer, L. Woste, and J. P. Wolf, “Size dependence of sodium and lithium clusters ionization potentials,” J. Phys. IV. Colloque C7 (France) 1, 509–512 (1991).

    Google Scholar 

  15. W. A. de Heer, “The physics of simple metal clusters: Experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).

    Article  Google Scholar 

  16. O. Kostko, “Photoelectron spectroscopy of massselected sodium, coinage metal and divalent metal cluster anions,” Ph._D. Dissertation, University of Freiburg, Germany, (2007).

    Google Scholar 

  17. A. Halder and V. V. Kresin, “Nanocluster ionization energies and work function of aluminum, and their temperature dependence,” J. Chem. Phys. 143, 164313 (2015).

    Article  Google Scholar 

  18. C. C. Yang and S. Li, “Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 165413 (2007).

    Article  Google Scholar 

  19. S. C. Hendy, “A thermodynamic model for the melting of supported metal nanoparticles,” Nanotecnology 18, 175703 (2007).

    Article  Google Scholar 

  20. G. Guisbiers, “Size-dependent materials properties toward a universal equation,” Nanoscale Res. Lett. 5, 1132–1136 (2010).

    Article  Google Scholar 

  21. H. Delavari, H. R. M. Hosseini, and A. Simchi, “Effects of particle size, shape and crystal structure on the formation energy of Schottky vacancies in freestanding metal nanoparticles: A model study,” Physica A 406, 3777–3780 (2011).

    Article  Google Scholar 

  22. W. Ekardt, “Work function of small metal particles: Self-consistent spherical jellium-background model,” Phys. Rev. B: Solid State 29, 1558–1564 (1984).

    Article  Google Scholar 

  23. A. Vieira, M. B. Torres, C. Fiolhais, and L. C. Balbas, “Comparison of the spherically averaged pseudopotential model with the stabilized jellium model,” J. Phys., B 30, 3583–3596 (1997).

    Article  Google Scholar 

  24. A. Aguado and J. M. Lopez, “Structures and stabilities of Aln +, Aln and Aln - (n = 13–34) clusters,” J. Chem. Phys. 130, 064704 (2009).

    Article  Google Scholar 

  25. J. P. Perdew, “Simple theories for simple metals: Facedependent surface energies and work functions,” Prog. Surf. Sci. 48, 245–259 (1995).

    Article  Google Scholar 

  26. J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for manyelectron systems,” Phys. Rev. B 23, 5048–5079 (1981).

    Article  Google Scholar 

  27. V. V. Pogosov and I. V. Reva, “Ionization potential of metallic cluster with point defects or impurities. Vacancies,” Phys. Solid State (in press).

  28. J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B: Condens. Matter 45, 13244–13249 (1992).

    Article  Google Scholar 

  29. W. Vogelsberger, “Thermodynamics of homogeneous nucleation in an isolated system: the application of a temperature dependent surface tension,” Chem. Phys. Lett. 347, 229–236 (2001).

    Article  Google Scholar 

  30. V. V. Pogosov, “On the tension of curved metal surface,” Solid State Commun. 89, 1017–1021 (1994).

    Article  Google Scholar 

  31. H. Hotop and W. C. Lineberger, “Binding energies in atomic negative ions: II,” J. Phys. Chem. Ref. Data 14, 731–750 (1985).

    Google Scholar 

  32. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. van de Walle, “Firstprinciples calculations for point defects in solids,” Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  33. P. Ziesche, J. P. Perdew, and C. Fiolhais, “Spherical voids in the stabilized jellium model: Rigorous theorems and Padé representation of the void-formation energy,” Phys. Rev. B: Condens. Matter 49, 7919–7928 (1994).

    Article  Google Scholar 

  34. A. V. Babich, P. V. Vakula, and V. V. Pogosov, “On the vacancy in a metal”, Phys. Solid State 56, 873–880 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pogosov.

Additional information

Original Russian Text © V.V. Pogosov, V.I. Reva, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 9, pp. 871–882.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogosov, V.V., Reva, V.I. On the calculation of the energies of dissociation, cohesion, vacancy formation, electron attachment, and the ionization potential of small metallic clusters containing a monovacancy. Phys. Metals Metallogr. 118, 827–838 (2017). https://doi.org/10.1134/S0031918X17070080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17070080

Keywords

Navigation