Skip to main content
Log in

On the geometry and thermodynamics of nanoclusters

  • Discussions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

It is proposed that the volume, surface, and radii of nanoclusters be determined by Delaunay tesselation. Argon, silver, zinc, and iron clusters with total numbers of atoms ranging from 13 to 1415 are investigated by means of molecular dynamics (MD) along with the different potentials of interparticle interactions using the embedded atom model (EAM). The cluster surface area is defined as the sum of the surface areas of Delaunay simplexes. A formula that accurately describes the atomic volumes of clusters is proposed. The geometric characteristics, numbers of surface atoms, sphericity, energy, and entropy of specific clusters are calculated via MD. It is shown that the number of surface atoms for a given cluster size depends substantially on the material due to variations in the looseness of surface layers. The distribution of kinetic energy over atoms and parts of clusters is not uniform and deviates by ∼1/N. It is found that the dependence of energy U on the cluster size is linear in the (U/N, N −1/3) coordinate system (where N is the number of atoms) for all investigated cases. The behaviors of entropy and the effective Gibbs energy are similar, so specific surface characteristics need not be determined when calculating excess characteristics. The specific excess surface energy per unit area, determined from the MD data on clusters, grows by several tens of percent when their size falls from N = 1415 to 13. In all of the investigated cases, nanoclusters are stable at any size. The melting point depression of nanoclusters is proportional to N −1/3 and can be calculated from the MD data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Rusanov, Thermodynamics of Surface Phenomena (Leninrg. Gos. Univ., Leningrad, 1960) [in Russian].

    Google Scholar 

  2. T. L. Hill, Thermodynamics of Small Systems (Benjamin, New York, 1963), Ch. 1.

    Google Scholar 

  3. R. Ramprasad and R. G. Hoagland, Model. Simul. Mater. Sci. Eng. 1, 189 (1993).

    Article  CAS  Google Scholar 

  4. B. M. Smirnov, Phys. Usp. 37, 1079 (1994).

    Article  Google Scholar 

  5. D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).

    Article  CAS  Google Scholar 

  6. V. D. Lakhno, Clusters in Physics, Chemistry, Biology (Regular. Khaotich. Dinamika, Izhevsk, Moscow, 2001) [in Russian].

    Google Scholar 

  7. D. I. Zhukhovitskii, J. Exp. Theor. Phys. 94, 336 (2002).

    Article  CAS  Google Scholar 

  8. D. I. Zhukhovitskii, Colloid. J. 65, 440 (2003).

    Article  CAS  Google Scholar 

  9. R. S. Berry and B. M. Smirnov, Phys. Usp. 48, 345 (2005).

    Article  CAS  Google Scholar 

  10. I. P. Suzdalev, Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2005) [in Russian].

    Google Scholar 

  11. V. M. Samsonov, V. A. Khashin, and V. V. Dronnikov, Colloid. J. 70, 763 (2008).

    Article  CAS  Google Scholar 

  12. D. K. Belashchenko, A. N. Sirenko, and D. L. Tytik, Nanotekhnol. Russia 4, 618 (2009).

    Article  Google Scholar 

  13. D. N. Sokolov, P. V. Komarov, and N. Yu. Sdobnyakov, in Physicochemical Aspects of Researches on Clusters, Nanostructures and Nanomaterials (Tversk. Gos. Univ., Tver, 2009), No. 1, pp. 106–116 [in Russian].

    Google Scholar 

  14. V. M. Samsonov, S. S. Kharechkin, S. L. Gafner, L. V. Redel’, and Yu. Ya. Gafner, Crystallogr. Rep. 54, 526 (2009).

    Article  CAS  Google Scholar 

  15. R. S. Berry and B. M. Smirnov, Phys. Usp. 52, 137 (2009).

    Article  CAS  Google Scholar 

  16. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 1717 (2010).

    Article  CAS  Google Scholar 

  17. G. N. Makarov, Phys. Usp. 53, 179 (2010).

    Article  CAS  Google Scholar 

  18. N. Yu. Sdobnyakov, S. V. Repchak, V. M. Samsonov, A. N. Bazulev, D. A. Kul’pin, and D. N. Sokolov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 508 (2011).

    Article  CAS  Google Scholar 

  19. V. M. Samsonov and D. E. Demenkov, Metally, No. 2, 100 (2012).

    Google Scholar 

  20. D. N. Sokolov, N. Yu. Sdobnyakov, and P. V. Komarov, Metally, No. 2, 230 (2012).

    Google Scholar 

  21. N. Yu. Sdobnyakov, D. N. Sokolov, V. M. Samsonov, and P. V. Komarov, Metally, No. 2, 48 (2012).

    Google Scholar 

  22. V. A. Pavlov, Metally, No. 3, 164 (2011).

    Google Scholar 

  23. N. A. Bul’enkov, Vestn. Nizhegor. Univ. Lobachevskogo, Ser. Fiz. Tverd. Tela, No. 1, 19 (1998).

    Google Scholar 

  24. G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2013).

    Article  Google Scholar 

  25. N. N. Medvedev, Voronoi-Delaunay Method in Studying the Structure of Noncrystalline Systems (Novosib. Univ., Novosibirsk, 1994) [in Russian].

    Google Scholar 

  26. M. Doyama and Y. Kogure, Comput. Mater. Sci. 14, 80 (1999).

    Article  CAS  Google Scholar 

  27. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, Philos. Mag. A 83, 3977 (2003).

    Article  CAS  Google Scholar 

  28. D. K. Belashchenko, High Temp. 50, 61 (2012).

    Article  CAS  Google Scholar 

  29. D. K. Belashchenko and O. I. Ostrovskii, Russ. J. Phys. Chem. A 78, 1302 (2004).

    Google Scholar 

  30. Zhiya Qiao, Lijun Yan, Zhanmin Cao, and Yunan Xie, J. Alloys Compd. 325, 180 (2001).

    Article  CAS  Google Scholar 

  31. Techniques de l’Ingenieur. Traite Constantes physicochimiques. Constantes mecaniques et viscosite. Donnees caracteristiques sur les tensions superficielles et viscosites des fluids. K 476-2.

  32. V. I. Nizhenko and A. I. Floka, Surface Tension of Metals and Alloys (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  33. R. S. Tolman, J. Chem. Phys. 17, 333 (1949).

    Article  CAS  Google Scholar 

  34. D. K. Belashchenko, N. E. Kravchunovskaya, and O. Ostrovski, CALPHAD: Comput. Coupl. Phase Diagrams Thermochem. 34, 45 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Original Russian Text © D.K. Belashchenko, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 3, pp. 517–532.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belashchenko, D.K. On the geometry and thermodynamics of nanoclusters. Russ. J. Phys. Chem. 89, 516–530 (2015). https://doi.org/10.1134/S0036024415030073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415030073

Keywords

Navigation