Skip to main content
Log in

The Charge Transport Mechanism in a New Magnetic Topological Insulator MnBi0.5Sb1.5Te4

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A new layered magnetic topological insulator with the composition MnBi0.5Sb1.5Te4 is obtained. The electrical conductivity in the plane of the layers and in the direction normal to the layers is studied in the range of temperatures of 1.4–300 K. It is found that a “metallic” character of the temperature dependence of the resistivity ρ(T) is observed in the range of temperatures of 50–300 K in both directions. Below T = 50 K, the value of ρ increases and demonstrates an uncommon temperature dependence with a characteristic feature in the region of the critical temperature Tc = 23 K. The increase in the resistance in the temperature range of 50–23 K is determined by the spin fluctuations and magnetic phase transition. Below Tc and down to 1.4 K, ρ(T) demonstrates a behavior characteristic for the weak localization effect, which is confirmed by the analysis of the data obtained when studying magnetoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Y. Tokura, K. Yasuda, and A. Tsukazaki, Nat. Rev. Phys. 1, 126 (2019).

    Article  Google Scholar 

  2. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Yu. Vyazovskaya, S. V. Eremeev, et al., Nature (London, U.K.) 576, 416 (2019).

    Article  ADS  Google Scholar 

  3. H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.‑J. Tian, W.-H. Fan, Z.-C. Rao, J.-R. Huang, J.‑J. Li, Z.-T. Liu, W.-L. Liu, Y.-B. Huang, Y.-L. Li, Y. Liu, et al., Phys. Rev. X 9, 041039 (2019).

    Google Scholar 

  4. I. I. Klimovskikh, M. M. Otrokov, D. Estyunin, S. V. Eremeev, S. O. Filnov, A. Koroleva, E. Shevchenko, V. Voroshnin, A. G. Rybkin, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, et al., npj Quantum Mater. 5, 54 (2020).

  5. L. Ding, C. Hu, F. Ye, E. Feng, N. Ni, and H. Cao, Phys. Rev. B 101, 020412 (2020).

    Article  ADS  Google Scholar 

  6. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  7. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science (Washington, DC, U. S.) 318, 766 (2007).

    Article  ADS  Google Scholar 

  8. Y. Xia, D. Qian, D. Hsieh L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).

    Article  Google Scholar 

  9. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  10. K. Kuroda, M. Ye, A. Kimura, S. V. Eremeev, E. E. Krasovskii, E. V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 105, 146801 (2010).

    Article  ADS  Google Scholar 

  11. Y. L. Chen, Z. K. Liu, J. G. Analytis, J.-H. Chu, H. J. Zhang, B. H. Yan, S.-K. Mo, R. G. Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z.-X. Shen, Phys. Rev. Lett. 105, 266401 (2010).

    Article  ADS  Google Scholar 

  12. H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, Phys. Rev. Lett. 105, 036404 (2010).

    Article  ADS  Google Scholar 

  13. S. V. Eremeev, G. Bihlmayer, M. Vergniory, Yu. M. Koroteev, T. V. Menshchikova, J. Henk, A. Ernst, and E. V. Chulkov, Phys. Rev. B 83, 205129 (2011).

    Article  ADS  Google Scholar 

  14. S. Kim, M. Ye, K. Kuroda, Y. Yamada, E. E. Krasovskii, E. V. Chulkov, K. Miyamoto, M. Nakatake, T. Okuda, Y. Ueda, K. Shimada, H. Namatame, M. Taniguchi, and A. Kimura, Phys. Rev. Lett. 107, 056803 (2011).

    Article  ADS  Google Scholar 

  15. S. V. Eremeev, G. Lolt, T. M. Menshchikova, B. Slomski, Yu. M. Koroteev, Z. S. Aliyev, M. B. Babanly, J. Henk, A. Ernst, L. Patthey, A. Eich, A. A. Khajetoorians, J. Hagemeister, O. Pietzsch, J. Weibe, et al., Nat. Commun. 3, 635 (2012).

    Article  ADS  Google Scholar 

  16. J. Henk, A. Ernst, S. V. Eremeev, E. V. Chulkov, I. V. Maznichenko, and I. Mertig, Phys. Rev. Lett. 108, 206801 (2012).

    Article  ADS  Google Scholar 

  17. M. Papagno, S. V. Eremeev, J. Fujii, Z. S. Aliev, M. B. Babanly, S. K. Mahatha, I. Vobornik, N. T. Mamedov, D. Pacile, and E. V. Chulkov, ACS Nano 10, 3518 (2016).

    Article  Google Scholar 

  18. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, et al., Science (Washington, DC, U. S.) 340, 167 (2013).

    Article  ADS  Google Scholar 

  19. Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, et al., Science (Washington, DC, U. S.) 357, 294 (2017).

    Article  ADS  Google Scholar 

  20. A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009).

    Article  ADS  Google Scholar 

  21. R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Nat. Phys. 6, 284 (2010).

    Article  Google Scholar 

  22. J. Choi, H.-W. Lee, B.-S. Kim, S. Choi, J. Choi, J. H. Song, and S. Cho, J. Appl. Phys. 97, 10D324 (2005).

  23. J. W. G. Bos, M. Lee, E. Morosan, H. W. Zandbergen, W. L. Lee, N. P. Ong, and R. J. Cava, Phys. Rev. B 74, 184429 (2006).

    Article  ADS  Google Scholar 

  24. Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.‑Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).

    Article  ADS  Google Scholar 

  25. M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, I. P. Rusinov, A. Yu. Vyazovskaya, Yu. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, 2D Mater. 4, 025082 (2017).

  26. T. Hirahara, S. V. Eremeev, T. Shirasawa, Y. Okuyama, T. Kubo, R. Nakanishi, R. Akiyama, A. Takayama, T. Hajiri, S.-I. Ideta, M. Matsunami, K. Sumida, K. Miyamoto, Y. Takagi, K. Tanaka, et al., Nano Lett. 17, 3493 (2017).

    Article  ADS  Google Scholar 

  27. M. M. Otrokov, T. V. Menshchikova, I. P. Rusinov, M. G. Vergniory, V. M. Kuznetsov, and E. V. Chulkov, JETP Lett. 105, 297 (2017).

    Article  ADS  Google Scholar 

  28. T. Hirahara, M. M. Otrokov, T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, K. Amemiya, T. Shirasawa, S. Ideta, K. Miyamoto, K. Tanaka, et al., Nat. Commun. 11, 4821 (2020).

    Article  ADS  Google Scholar 

  29. B. Xu, Y. Zhang, E. H. Alizade, Z. A. Jahangirli, F. Lyzwa, E. Sheveleva, P. Marsik, Y. K. Li, Y. G. Yao, Z. W. Wang, B. Shen, Y. M. Dai, V. Kataev, M. M. Otrokov, E. V. Chulkov, N. T. Mamedov, and Ch. Bernhard, Phys. Rev. B 103, L121103 (2021).

    Article  ADS  Google Scholar 

  30. R. C. Vidal, H. Bentmann, T. R. F. Peixoto, A. Zeugner, S. K. Moser, C. H. Min, S. Schatz, K. Kißner, M. Unzelmann, C. Fornari, H. B. Vasili, M. Valvidares, K. Sakamoto, J. Fujii, I. Vobornik, et al., Phys. Rev. B 100, 121104R (2019).

    Article  ADS  Google Scholar 

  31. S. V. Eremeev, I. P. Rusinov, Yu. M. Koroteev, A. Yu. Vyazovskaya, M. Hoffmann, P. M. Echenique, A. Ernst, M. M. Otrokov, and E. V. Chulkov, J. Phys. Chem. Lett. 12, 4268 (2021).

  32. J.-Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, and B. C. Sales, Phys. Rev. B 100, 104409 (2019).

    Article  ADS  Google Scholar 

  33. B. Chen, F. Fei, D. Zhang, B. Zhang, W. Liu, S. Zhang, P. Wang, B. Wei, Y. Zhang, Z. Zuo, J. Guo, Q. Liu, Z. Wang, X. Wu, J. Zong, et al., Nat. Commun. 10, 4469 (2019).

    Article  ADS  Google Scholar 

  34. Z. S. Aliev, I. R. Amiraslanov, D. I. Nasonova, A. V. Shevelkov, N. A. Abdullayev, Z. A. Jahangirli, E. N. Orujlu, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, and E. V. Chulkov, J. Alloys Compd. 789, 443 (2019).

    Article  Google Scholar 

  35. L. I. Buravov, Sov. Tech. Phys. 34, 464 (1989).

    Google Scholar 

  36. N. A. Abdullaev, S. Sh. Kakhramanov, T. G. Kerimova, K. M. Mustafaeva, and S. A. Nemov, Semiconductors 43, 145 (2009).

    Article  ADS  Google Scholar 

  37. V. F. Gantmakher, Electrons in Disordered Media (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Funding

This work was financially supported by the Science Development Foundation under the President of the Republic of Azerbaijan (grants nos. EİF-BGM-4-RFTF-1/2017-21/04/1-M-02, EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/16/1), Russian Foundation for Basic Research (grant no. 18-52-06009), St. Petersburg State University (grant no. 73028629) as well as the Spanish Ministerio de Ciencia e Innovación Foundation (grant no. PID2019-103910GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Abdullayev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullayev, N.A., Aliguliyeva, K.V., Zverev, V.N. et al. The Charge Transport Mechanism in a New Magnetic Topological Insulator MnBi0.5Sb1.5Te4. Phys. Solid State 63, 1120–1125 (2021). https://doi.org/10.1134/S1063783421080023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421080023

Keywords:

Navigation