Skip to main content
Log in

Compressibility and Electronic Properties of Metal Cyanides

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The compressibility and electronic properties of metal cyanides are studied using the density functional theory with the allowance for the van der Waals dispersion interaction. Gold cyanide is shown to have a low linear compressibility (less 0.1% at a pressure of 1 GPa) and a high linear modulus (~1200 GPa) along the –Au–CN–Au–CN– chains. Silver cyanide demonstrates a negative linear compressibility which correlates to the compressibility of coordination Ag–N bonds. For sodium cyanide, the linear compressibility along covalent C–N bonds is higher than that for gold and silver cyanides, while its anisotropy is lower. Unlike sodium cyanide, the cation–anion bonds of gold and silver cyanides (Au–N, Au–C, and Ag–N, Ag‒C) have a partially covalent nature and the upper valence states mainly correspond to the cation states. The energy gap width of gold cyanide is smaller than those for silver and sodium cyanides. The energy gap widths of gold and silver cyanides substantially decrease as the pressure increases which indicate the possibility of metallization at quite high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. A. Bowmaker, B. J. Kennedy, and J. C. Reid, Inorg. Chem. 37, 3968 (1998).

    Article  Google Scholar 

  2. D. Fontaine, C.R. Hebdomadaires Seances Acad. Sci. B 281, 443 (1975).

    Google Scholar 

  3. S. J. Hibble, J. B. Wood, E. J. Bilbe, A. H. Pohl, M. G. Tucker, A. C. Hannon, and A. M. Chippindale, Z. Kristallogr. 225, 457 (2010).

    Article  Google Scholar 

  4. M. Yu. Petrushina, S. V. Korenev, E. S. Dedova, and A. I. Gubanov, J. Struct. Chem. 61, 1655 (2020).

    Article  Google Scholar 

  5. K. Takenaka, Sci. Technol. Adv. Mater. 13, 013001 (2012).

    Article  Google Scholar 

  6. W. Miller, C. Smith, D. Mackenzie, and K. Evans, J. Mater. Sci. 44, 5441 (2009).

    Article  ADS  Google Scholar 

  7. D. Das, T. Jacobs, and L. J. Barbour, Nat. Mater. 9, 36 (2010).

    Article  ADS  Google Scholar 

  8. R. W. Munn, J. Phys. C 5, 535 (1972).

    Article  ADS  Google Scholar 

  9. A. D. Fortes, E. Suard, and K. S. Knight, Science (Washington, DC, U. S.) 331, 742 (2011).

    Article  ADS  Google Scholar 

  10. S. Hodgson, J. Adamson, S. Hunt, M. Cliffe, A. B. Cairns, and A. L. Goodwin, Chem. Commun. 50, 5264 (2014).

    Article  Google Scholar 

  11. K. Dolabdjian, A. Kobald, C. P. Romao, and H. Meyer, Dalton Trans. 47, 10249 (2018).

    Article  Google Scholar 

  12. L. Wang, C. Wang, H. Luo, and Y. Sun, J. Phys. Chem. C 121, 333 (2017).

    Article  Google Scholar 

  13. M. Yu. Seyidov and R. A. Suleymanov, J. Appl. Phys. 108, 063540 (2010).

    Article  ADS  Google Scholar 

  14. C. P. Romao, S. P. Donegan, J. W. Zwanziger, and M. A. White, Phys. Chem. Chem. Phys. 18, 30652 (2016).

    Article  Google Scholar 

  15. A. B. Cairns and A. L. Goodwin, Phys. Chem. Chem. Phys. 17, 20449 (2015).

    Article  Google Scholar 

  16. W. Cai and A. Katrusiak, Nat. Commun. 5, 4337 (2014).

    Article  ADS  Google Scholar 

  17. P. Serra-Crespo, A. Dikhtiarenko, E. Stavitski, J. Juan-Alcaniz, F. Kapteijn, F.-X. Coudert, and J. Gascon, Cryst. Eng. Commun. 17, 276 (2015).

    Article  Google Scholar 

  18. S. Duyker, V. Peterson, G. Kearley, A. Studer, and C. Kepert, Nat. Chem. 8, 270 (2016).

    Article  Google Scholar 

  19. H. Wang, M. Feng, Y. Wang, and Z. Gu, Sci. Rep. 6, 26015 (2016).

    Article  ADS  Google Scholar 

  20. D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Chem. Chem. Phys. 18, 33126 (2016).

    Article  Google Scholar 

  21. D. V. Korabel’nikov and Yu. N. Zhuravlev, J. Phys. Chem. A 121, 6481 (2017).

    Article  Google Scholar 

  22. S. Sobczak, A. Porolniczak, W. Cai, A. Gadysiak, V. I. Nikolayenko, D. Castell, L. Barbour, and A. Katrusiak, Chem. Commun. 56, 4324 (2020).

    Article  Google Scholar 

  23. A. Y. Liu and M. L. Cohen, Science (Washington, DC, U. S.) 245, 841 (1989).

    Article  ADS  Google Scholar 

  24. Q. Fan, C. Chai, Q. Wei, and Y. Yang, Materials 9, 427 (2016).

    Article  ADS  Google Scholar 

  25. R. S. Bradley, D. C. Munro, and P. S. Spencer, Phys. Status Solidi 36, K51 (1969).

    Article  ADS  Google Scholar 

  26. A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).

  27. D. C. Sorescu and B. M. Rice, J. Phys. Chem. C 114, 6734 (2010).

    Article  Google Scholar 

  28. S. Appalakondaiah, G. Vaitheeswaran, and S. Lebegue, J. Chem. Phys. 138, 184705 (2013).

    Article  ADS  Google Scholar 

  29. S. Hunter, P. Coster, A. Davidson, D. Millar, S. Parker, W. Marshall, R. Smith, C. Morrison, and C. Pulham, J. Phys. Chem. C 119, 2322 (2015).

    Article  Google Scholar 

  30. I. A. Fedorov and Yu. N. Zhuravlev, Chem. Phys. 436, 1 (2014).

    Article  Google Scholar 

  31. D. V. Korabel’nikov and Yu. N. Zhuravlev, J. Phys. Chem. Solids 87, 38 (2015).

    Article  ADS  Google Scholar 

  32. D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 59, 254 (2017).

    Article  ADS  Google Scholar 

  33. I. A. Fedorov, Comput. Mater. Sci. 139, 252 (2017).

    Article  Google Scholar 

  34. A. R. Oganov and C. W. Glass, J. Phys.: Condens. Matter. 20, 064210 (2008).

    ADS  Google Scholar 

  35. A. G. Kvashnin, Z. Allahyari, and A. R. Oganov, J. -Appl. Phys. 126, 040901 (2019).

    Article  ADS  Google Scholar 

  36. R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, and B. Kirtman, WIREs Comput. Mol. Sci. 8, e1360 (2018).

    Google Scholar 

  37. E. Apra, E. Stefanovich, R. Dovesi, and C. Roetti, Chem. Phys. Lett. 186, 329 (1991).

    Article  ADS  Google Scholar 

  38. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  ADS  Google Scholar 

  39. R. Dovesi, C. Roetti, C. Fava, M. Prencipe, and V. R. Saunders, Chem. Phys. 156, 11 (1991).

    Article  Google Scholar 

  40. C. Gatti, V. R. Saunders, and C. Roett, J. Chem. Phys. 101, 10686 (1994).

    Article  ADS  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  42. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  43. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  44. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).

    Article  Google Scholar 

  45. C. G. Broyden, J. Appl. Math. 6, 222 (1970).

    Google Scholar 

  46. D. V. Korabel’nikov and Yu. N. Zhuravlev, RSC Adv. 10, 42204 (2020).

  47. R. F. W. Bader, Chem. Rev. 91, 893 (1991).

    Article  Google Scholar 

  48. A. O. Borissova, A. A. Korlyukov, M. Y. Antipind, and K. A. Lyssenko, J. Phys. Chem. A 112, 11519 (2008).

    Article  Google Scholar 

  49. C. Gatti and S. Casassa, TOPOND14 User’s Manual (CNR-ISTM Milano, Milano, 2014).

    Google Scholar 

  50. R. F. W. Bader, Atoms in Molecules—A Quantum Theory (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  51. D. Cremer and E. Kraka, Angew. Chem. Int. Ed. 23, 627 (1984).

    Article  Google Scholar 

  52. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins, J. Chem. Phys. 117, 5529 (2002).

    Article  ADS  Google Scholar 

  53. C. Gatti, Z. Kristallogr. 220, 399 (2005).

    Article  Google Scholar 

  54. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).

    Article  ADS  Google Scholar 

  55. E. A. Zhurova, A. I. Stash, V. G. Tsirelson, V. V. Zhurov, E. V. Bartashevich, V. A. Potemkin, and A. A. Pinkerton, J. Am. Chem. Soc. 128, 14728 (2006).

    Article  Google Scholar 

  56. D. V. Korabel’nikov and Yu. N. Zhuravlev, RSC Adv. 9, 12020 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Korabel’nikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korabel’nikov, D.V., Fedorov, I.A. & Zhuravlev, Y.N. Compressibility and Electronic Properties of Metal Cyanides. Phys. Solid State 63, 1021–1027 (2021). https://doi.org/10.1134/S106378342107012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342107012X

Keywords:

Navigation