Skip to main content
Log in

First-principles study of the pressure effects on the structural and electronic properties of crystalline organic azide C10H8N6O4

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Within the density functional theory with regard to the dispersion interaction the crystal structure parameters of organic C10H8N6O4 azide are determined. The pressure effect in the range 0-20 GPa on its structural and electronic properties is studied. Parameters of the equation of state in the Vinet and Birch–Murnaghan models are determined. Within the quasi-particle method (G 0 W 0) the energy band structure is calculated. It is shown that the hydrostatic pressure of 20 GPa results in the approach of planes of C10H8N6O4 molecules and their shift relative to each other. This is accompanied by a broadening of the upper valence bands and a decrease in the band gap from 5.07 eV to 3.97 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bräse and K. Banert (eds.), Front Matter, in Organic Azides: Syntheses, Applications, John Wiley & Sons, Ltd, Chichester, UK (2009).

  2. V. E. Zarko, Combust., Explos. Shock Waves, 46, No. 2, 121–131 (2010).

    Article  Google Scholar 

  3. T. A. Bolshova, A. A. Paletsky, O. P. Korobeinichev, and V. D. Knyazev, Combust., Explos. Shock Waves, 50, No. 1, 10–24 (2014).

    Article  Google Scholar 

  4. O. V. Dorofeeva, O. N. Ryzhova, and M. A. Suntsova, J. Phys. Chem. A, 117, No. 31, 6835–6845 (2013).

    Article  CAS  Google Scholar 

  5. F. Glocklhofer, J. Frohlich, B. Stoger, and M. Weil, Acta Crystallogr. E., 70, 39–42 (2014).

    Article  Google Scholar 

  6. M. V. Vener, E. O. Levina, A. A. Astakhov, and V. G. Tsirelson, Chem. Phys. Lett., 638, 233–236 (2015).

    Article  CAS  Google Scholar 

  7. J. Binns, M. R. Healy, S. Parsons, and C. A. Morrison, Acta Cryst. B, 70, 259–267 (2014).

    Article  CAS  Google Scholar 

  8. J. Zhang, Z. Zeng, H.-Q. Lin, and Y.-L. Li, Sci. Rep., 4, 4358 (2014).

    Google Scholar 

  9. X. Wang, J. Li, J. Botana, et al., J. Chem. Phys., 139, 164710 (2013).

    Article  Google Scholar 

  10. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys., 132, 154104 (2010).

    Article  Google Scholar 

  11. N. Zhuravlev, I. A. Fedorov, and M. Yu. Kiyamov, J. Struct. Chem., 53, No. 3, 417–423 (2012).

    Article  CAS  Google Scholar 

  12. I. A. Fedorov, Y. N. Zhuravlev, and V. P. Berveno, Phys. Status Solidi B, 249, 1438 (2012).

    Article  CAS  Google Scholar 

  13. I. A. Fedorov, Y. N. Zhuravlev, and V. P. Berveno, J. Chem. Phys., 138, 094509 (2013).

    Article  CAS  Google Scholar 

  14. I. A. Fedorov and Y. N. Zhuravlev, Chem. Phys., 436/437, 1–7 (2014).

    Article  Google Scholar 

  15. I. A. Fedorov, Yu. N. Zhuravlev, E. A. Kiseleva, J. Struct. Chem., 57, No. 1, 1–7 (2016).

    Article  CAS  Google Scholar 

  16. M. Dion, H. Rydberg, E. Schroder, et al., Phys. Rev. Lett., 92, 246401 (2004).

    Article  CAS  Google Scholar 

  17. K. Lee, E. D. Murray, L. Kong, et al., Phys. Rev. B, 22, 081101 (2010).

    Article  Google Scholar 

  18. T. Thonhauser, V. R. Cooper, S. Li, et al., Phys. Rev. B, 76, 125112 (2007).

    Article  Google Scholar 

  19. G. Roman-Perez and J. M. Soler, Phys. Rev. Lett., 103, 096102 (2009).

    Article  Google Scholar 

  20. I. Hamada, Phys. Rev. B, 89, 121103 (2014).

    Article  Google Scholar 

  21. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter., 21, 395502 (2009).

    Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188–5192 (1976).

    Article  Google Scholar 

  24. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys., 74, 601 (2002).

    Article  CAS  Google Scholar 

  25. L. Hedin and S. Lundqvist, Solid State Phys., 23, 1 (1970).

    Google Scholar 

  26. A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput. Phys. Commun., 180, 1392 (2009).

    Article  CAS  Google Scholar 

  27. P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, J. Phys. C, 19, L467 (1986).

    Article  CAS  Google Scholar 

  28. Birch F., Phys. Rev., 71, 809 (1947).

    Article  Google Scholar 

  29. P. Zhang, K. Morokuma, and A. M. Wodtke, J. Chem. Phys., 122, 014106 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Fedorov.

Additional information

Original Russian Text © I. A. Fedorov and Yu. N. Zhuravlev.

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 6, pp. 1136-1140, July-August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, I.A., Zhuravlev, Y.N. First-principles study of the pressure effects on the structural and electronic properties of crystalline organic azide C10H8N6O4 . J Struct Chem 57, 1074–1078 (2016). https://doi.org/10.1134/S0022476616060032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616060032

Keywords

Navigation