Skip to main content

Advertisement

Log in

Negative thermal expansion: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Most materials demonstrate an expansion upon heating, however a few are known to contract, i.e. exhibit a negative coefficient of thermal expansivity (NTE). This naturally occurring phenomenon has been shown to occur in a range of solids including complex metal oxides, polymers and zeolites, and opens the door to composites with a coefficient of thermal expansion (CTE) of zero. The state of the art in NTE solids is reviewed, and understanding of the driving mechanisms of the effect is considered along with experimental and theoretical evidence. The various categories of solids with NTE are explored, and experimental methods for their experimental characterisation and applications for such solids are proposed. An abstraction for an underlying mechanism for NTE at the supramolecular level and its applicability at the molecular level is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chang R (2000) Physical chemistry for the chemical and biological sciences, 3rd edn. University Science Books, Sausalito

    Google Scholar 

  2. Evans JSO, David WIF, Sleight AW (1999) Acta Crystallogr B 55:333

    Article  PubMed  Google Scholar 

  3. Evans JSO, Hu Z, Jorgensen JD, Argyriou DN, Short S, Sleight AW (1997) Science 275:61

    Article  PubMed  CAS  Google Scholar 

  4. Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Science 272:90

    Article  ADS  CAS  Google Scholar 

  5. Attfield MP, Sleight AW (1998) Chem Mater 10:2013

    Article  CAS  Google Scholar 

  6. Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) J Mater Chem 11:212

    Article  CAS  Google Scholar 

  7. Tao JZ, Sleight AW (2003) J Phys Chem Solids 64:1473

    Article  ADS  CAS  Google Scholar 

  8. Goodwin AL, Calleja M, Conterio MJ, Dove MT, Evans JSO, Keen DA, Peters L, Tucker MG (2008) Science 319:794

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Baughman RH, Turi EA (1973) J Polym Sci B 11(12):2453

    CAS  Google Scholar 

  10. Baughman RH (1973) J Chem Phys 58(7):2976

    Article  ADS  CAS  Google Scholar 

  11. Baughman RH, Galvado DS (1995) Chem Phys Lett 240(1–3):180

    Article  ADS  CAS  Google Scholar 

  12. Rupnowski P, Gentz M, Sutter JK, Kumosa M (2005) Compos Part A 36:327

    Article  Google Scholar 

  13. Yamanaka A, Kashima T, Tsutsumi M (2007) J Compos Mater 41(2):165

    Article  CAS  Google Scholar 

  14. Sleight AW (1995) Endeavor 19(2):64

    Article  CAS  Google Scholar 

  15. Ernst C, Broholm G, Kowach R, Ramirez AP (1998) Nature 396(12):147

    ADS  CAS  Google Scholar 

  16. Dove MT (1997) Am Miner 82:215

    Google Scholar 

  17. Welche PRL, Heine V, Dove MT (1998) Phys Chem Miner 26:63

    Article  ADS  CAS  Google Scholar 

  18. Evans JSO, David WIF, Sleight AW (1999) Acta Crystallogr B 55:333

    Article  Google Scholar 

  19. Evans JSO (1999) J Chem Soc Dalton Trans 331:7

    Google Scholar 

  20. Mittal R, Chaplot SL (2000) Solid State Commun 115:319

    Article  ADS  CAS  Google Scholar 

  21. Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) J Phys Condens Matter 17:217

    Article  ADS  Google Scholar 

  22. Hammonds KD, Bosenick A, Dove MT, Heine V (1998) Am Miner 83:476

    CAS  Google Scholar 

  23. Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC (1996) J Phys Condens Matter 8:10973

    Article  ADS  CAS  Google Scholar 

  24. Forster PM, Yokochi A, Sleight AW (1998) J Solid State Chem 140:157

    Article  ADS  CAS  Google Scholar 

  25. Woodcock DA, Lightfoot P, Ritter C (2000) J Solid State Chem 149:92

    Article  ADS  CAS  Google Scholar 

  26. Woodcock DA, Lightfoot P, Smith RI (1999) J Mater Chem 9:2631

    Article  CAS  Google Scholar 

  27. Hammonds KD, Heine V, Dove M (1998) J Phys Chem B 102:1759

    Article  CAS  Google Scholar 

  28. Hammonds KD, Deng H, Heine V, Dove MT (1997) Phys Rev Lett 78(19):3701

    Article  ADS  CAS  Google Scholar 

  29. Sanchez-Vallea C, Sinogeikin SV, Lethbridge ZAD, Walton RI, Smith CW, Evans KE, Bass JD (2005) J Appl Phys 98:053508

    Article  ADS  Google Scholar 

  30. Bull I, Lightfoot P, Villaescusa LA, Bull LM, Glover RKB, Evans JSO, Morris RE (2003) J Am Chem Soc 125:4342

    Article  PubMed  CAS  Google Scholar 

  31. Evans JSO, Mary TA (2000) Int J Inorg Mater 2:143

    Article  CAS  Google Scholar 

  32. Tyagi AK, Achary SN, Mathews MD (2002) J Alloys Compd 339:207

    Article  CAS  Google Scholar 

  33. Schneider T, Srinivasam G, Enz C (1972) Phys Rev A 5(3):476

    Article  Google Scholar 

  34. Cochran W (1973) The dynamics of atoms in crystals. Edward Arnolds, London

    Google Scholar 

  35. Khosrovani N, Sleight AW (1997) J Solid State Chem 132:355

    Article  ADS  CAS  Google Scholar 

  36. Evans JSO, Mary TA, Sleight AW (1998) J Solid State Chem 137:148

    Article  ADS  CAS  Google Scholar 

  37. Miller W, Mackenzie DS, Smith CW, Evans KE (2008) Mech Mater 40:351

    Article  Google Scholar 

  38. Giddy P, Dove MT, Pawley GS, Heine V (1993) Acta Crystallogr A 49:697

    Article  Google Scholar 

  39. Woodcock DA, Lightfoot P, Villaescusa LA, Diaz-Cabanas MJ, Camblor MA (1999) J Mater Chem 9:349

    Article  CAS  Google Scholar 

  40. Heine V, Welche PRL, Dove MT (1999) J Am Ceram Soc 82(7):1793

    Article  CAS  Google Scholar 

  41. Phillips JC (1979) J Non-Cryst Solids 34:153

    Article  ADS  CAS  Google Scholar 

  42. Khosrovani N, Sleight AW (1996) J Solid State Synth 121:2

    Article  ADS  CAS  Google Scholar 

  43. Reisner BA, Lee Y, Hanson JC, Jones GA, Parise JB, Corbin DR, Toby BH, Freitag A, Larese JZ, Kahlenberg V (2000) Chem Commun 222:1

    Google Scholar 

  44. Wu Y, Kobayashi A, Halder G, Peterson V, Chapman K (2008) Angew Chem Int Ed 47:8929

    Article  CAS  Google Scholar 

  45. Woodcock DA, Lightfoot P (1999) J Mater Chem 9:2907

    Article  CAS  Google Scholar 

  46. Kameswari U, Sleight AW, Evans JSO (2000) Int J Inorg Mater 2:333

    Article  CAS  Google Scholar 

  47. Closmann C, Sleight AW (1998) J Solid State Chem 139:424

    Article  ADS  CAS  Google Scholar 

  48. Weller MT (2001) Inorganic materials chemistry: Oxford chemistry primers. Oxford University Press, Oxford University

    Google Scholar 

  49. Martinez-Inesta MM, Lobo RF (2005) J Phys Chem B 109(19):9389

    Article  PubMed  CAS  Google Scholar 

  50. Johnson MR, Kearley GJ, Buttner HG (1999) AIP Conf Proc 479:28

    Google Scholar 

  51. Reisner BA, Lee Y, Hanson JC, Jones GA, Parise JB, Corbin DR, Toby BH, Freitag A, Larese JZ, Kahlenberg V (2000) Chem Commun 22:2221

    Article  Google Scholar 

  52. Marinkovic BA, Jardim PM, Saavedra A, Lau LY, Baehtz C, de Avillez RR, Rizzo F (2004) Micropor Mesopor Mater 71(1):117

    Article  CAS  Google Scholar 

  53. Jardim PM, Marinkovic BA, Saavedra A, Lau LY, Baehtz C, Rizzo F (2004) Micropor Mesopor Mater 76(1):23

    Article  CAS  Google Scholar 

  54. Sen S, Wusirika RR, Youngman RE (2006) Micropor Mesopor Mater 87:217

    Article  CAS  Google Scholar 

  55. Yamahara K, Okazaki K, Kawamura K (1995) Catal Today 23:397

    Article  CAS  Google Scholar 

  56. Tschaufeser P, Parker SC (1995) J Phys Chem 99(26):10609

    Article  CAS  Google Scholar 

  57. Bieniok A, Hammonds KD (1998) Micropor Mesopor Mater 25(1):193

    Article  CAS  Google Scholar 

  58. Ramirez AP, Kowach GR (1998) Phys Rev Lett 80(22):4903

    Article  ADS  CAS  Google Scholar 

  59. Miller W, Smith CW, Burgess AN, Dooling PJ, Evans KE (2008) Phys Status Solidi B 245(3):552

    Article  CAS  Google Scholar 

  60. Allen S, Evans JSO (2003) Phys Rev B 68:134101

    Article  ADS  Google Scholar 

  61. Sebastian L, Sumithra S, Manimama J, Umarji AM, Gopalakrishnan J (2003) Mater Sci Eng B103:289

    Article  CAS  Google Scholar 

  62. Amos TG, Yokochi A, Sleight AW (1998) J Solid State Chem 14:303

    Article  Google Scholar 

  63. Sleight AW (1998) Inorg Chem 37:2854

    Article  CAS  Google Scholar 

  64. Liu Y, Withers RL, Noren L (2003) Solid State Sci 5:427

    Article  ADS  CAS  Google Scholar 

  65. Woodcock DA, Lightfoot P, Ritter C (1998) Chem Commun 1:107

    Article  Google Scholar 

  66. Maniwa Y, Fujiwara R, Kira H, Tou H, Kataura H, Suzuki S, Achiba Y, Nishibori E, Takata M, Sakata M, Fujiwara A, Suematsu H (2001) Phys Rev B 64:241402

    Article  ADS  Google Scholar 

  67. Tomanek D (2005) J Phys Condens Matter 17:R413

    Article  ADS  CAS  Google Scholar 

  68. Kwon YK, Berber S, Tomanek D (2004) Phys Rev Lett 92(1):015901

    Article  PubMed  ADS  Google Scholar 

  69. Brown S, Cao J, Musfeldt JL, Dragoe N, Cimpoesu F, Ito S, Takagi H, Cross RJ (2006) Phys Rev B 73:125446

    Article  ADS  Google Scholar 

  70. Dubbeldam D, Walton KS, Ellis DE, Snurr RQ (2007) Angew Chem Int Ed 46(24):4496

    Article  CAS  Google Scholar 

  71. Sleight AW (1998) Curr Opin Solid State Mater Sci 3:128

    Article  CAS  Google Scholar 

  72. Versulius A, Douglas WH, Sakaguchi RL (1996) Dent Mater 12:290

    Article  Google Scholar 

  73. Tran KD, Groshens TJ, Nelson JG (2001) Mater Sci Eng A303:234

    CAS  Google Scholar 

  74. Imanaka N, Hiraiwa M, Adachi G, Dabkowska H, Dabkowski A (2000) J Cryst Growth 220:176

    Article  ADS  CAS  Google Scholar 

  75. Clegg JW, Kelly A (2002) Adv Eng Mater 4(6):388

    Article  Google Scholar 

  76. Couves JW, Jones RH, Parker SC, Tschaufeser P, Catlow CRA (1993) J Phys Condens Matter 5:L329

    Article  ADS  CAS  Google Scholar 

  77. Evans JSO, Mary TA, Sleight AW (1997) J Solid State Chem 133:580

    Article  ADS  CAS  Google Scholar 

  78. Landert M, Kelly A, Stearn RJ (2004) J Mater Sci 39:3563. doi:10.1023/B:JMSC.0000030707.91634.5f

    Article  ADS  CAS  Google Scholar 

  79. Ito T, Suganuma T, Wakashima K (1999) J Mater Sci Lett 18:1363

    Article  CAS  Google Scholar 

  80. Lim T (2005) J Mater Sci 40:3275. doi:10.1007/s10853-005-2700-6

    Article  ADS  CAS  Google Scholar 

  81. Kelly A, McCartney LN, Clegg WJ, Stearn RJ (2005) Compos Sci Technol 65:47

    Article  CAS  Google Scholar 

  82. Kelly A, Stearn RJ, McCartney LN (2006) Compos Sci Technol 66:154

    Article  CAS  Google Scholar 

  83. Aboudi J, Gilat R (2005) Int J Solids Struct 42:4372

    Article  MATH  Google Scholar 

  84. Qi J, Halloran JW (2004) J Mater Sci 39:4113. doi:10.1023/B:JMSC.0000033391.65327.9d

    Article  ADS  CAS  Google Scholar 

  85. Sigmund O, Torquato S (1996) Appl Phys Lett 69:21

    Article  Google Scholar 

  86. Lakes R (1996) J Mater Sci Lett 15:475

    CAS  Google Scholar 

  87. Rosen BW, Hashin Z (1970) Int J Eng Sci 8:157

    Article  Google Scholar 

  88. Shih-Fang C, McKinney TX (2005) Low coefficient of thermal expansion semiconductor packaging materials. US Patent US2005/0110168 A1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, W., Smith, C.W., Mackenzie, D.S. et al. Negative thermal expansion: a review. J Mater Sci 44, 5441–5451 (2009). https://doi.org/10.1007/s10853-009-3692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3692-4

Keywords

Navigation