Skip to main content
Log in

Thermal Conductivity of Rotator Chains with a Double-Barrier Interaction Potential

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of numerical simulation of the thermal conductivity of a one-dimensional chain of rotators with a double-barrier interaction potential between the nearest neighbors are presented. It is shown that the internal barrier that separates topologically nonequivalent degenerate states has a substantial effect on the temperature dependence of the thermal conductivity of the chain. At low heights of this barrier in the low-temperature region, the main contribution to the increase in the thermal conductivity is made by nonlinear normal modes. With an increase in the temperature, the increase in the thermal conductivity is limited by the occurrence of local above-barrier transitions that prevent energy transfer along the chain. With an increase in the internal barrier height, the contribution of nonlinear normal modes to the energy transfer process decreases and the system exhibits the temperature behavior typical of systems of conventional rotators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. M. Tritt, Thermal Conductivity: Theory, Properties and Apllications (Springer, New York, 2004).

    Book  Google Scholar 

  2. E. Fermi, J. Pasta, and S. Ulam, LASL Report LA-1940 (Los Alamos, 1955).

  3. A. Scott, Nonlinear Science Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, Oxford, 2003).

    MATH  Google Scholar 

  4. S. Iijima, Nature (London, U.K.) 354, 56 (1991).

    Article  ADS  Google Scholar 

  5. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  6. O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model (Springer, Berlin, 2004).

    Book  Google Scholar 

  7. G. M. Sagdeev, R. Z. Usikov, and D. A. Zaslavsky, Nonlinear Physics — From the Pendulum to Turbulence and Chaos (Harwood Academic, Cambridge, 1990).

    Google Scholar 

  8. S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377, 1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Dhar, Adv. Phys. 57, 457 (2008).

    Article  ADS  Google Scholar 

  10. S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 125, 040604 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Giardiná, R. Livi, A. Politi, and M. Vassalli, Phys. Rev. Lett. 84, 2144 (2000).

    Article  ADS  Google Scholar 

  12. O. V. Gendelman and A. V. Savin, Phys. Rev. Lett. 84, 2381 (2000).

    Article  ADS  Google Scholar 

  13. A. V. Savin and Y. A. Kosevich, Phys. Rev. E 89, 032102 (2014).

    Article  ADS  Google Scholar 

  14. D. Xiong, J. Stat. Mech. Theory Exp. 2016, 043208 (2016).

    Article  Google Scholar 

  15. D. Roy, Phys. Rev. E 86, 041102 (2012).

    Article  ADS  Google Scholar 

  16. G. R. Archana and D. Barik, Phys. Rev. E 99, 022103 (2019).

    ADS  Google Scholar 

  17. A. V. Savin and O. V. Gendelman, Phys. Rev. E 89, 012134 (2014).

    Article  ADS  Google Scholar 

  18. V. B. Pinheiro and P. Holliger, Curr. Opin. Chem. Biol. 16, 245 (2012).

    Article  Google Scholar 

  19. S. Homma and S. Takeno, Prog. Theor. Phys. 72, 679 (1984).

    Article  ADS  Google Scholar 

  20. S. Takeno and M. Peyrard, Phys. D 92, 140 (1996).

  21. A. V. Savin and O. V. Gendel’man, Phys. Solid State 43, 355 (2001).

    Article  ADS  Google Scholar 

  22. C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5, 1842 (2005).

    Article  ADS  Google Scholar 

  23. N. I. Rubtsova, C. M. Nyby, H. Zhang, B. Zhang, X. Zhou, J. Jayawickramarajah, A. L. Burin, and I. V. Rubtsov, J. Chem. Phys. 142, 212412 (2015).

    Article  ADS  Google Scholar 

  24. M. A. Kovaleva, V. V. Smirnov, and L. I. Manevitch, Mater. Phys. Mech. 35, 80 (2018).

    Google Scholar 

  25. A. V. Gorbunov, T. Putzeys, I. Urbanavičiūtė, R. A. J. Janssen, M. Wübbenhorst, R. P. Sijbesma, and M. Kemerink, Phys. Chem. Chem. Phys. 18, 23663 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Yu.A. Kosevich for taking part in fruitful discussions.

Funding

This work was supported by the Program of Fundamental Research of the Russian Academy of Sciences (project no. 0082-2014-0013) and by a grant from the Russian Foundation for Basic Research (project no. 20-33-90165). Computational resources were provided by Joint Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Klinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinov, A.P., Mazo, M.A. & Smirnov, V.V. Thermal Conductivity of Rotator Chains with a Double-Barrier Interaction Potential. Phys. Solid State 63, 1014–1020 (2021). https://doi.org/10.1134/S1063783421070118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070118

Keywords:

Navigation