Skip to main content
Log in

BiFeO3 Layer Thicknesses Effect on Magnetocaloric Effect in BiFeO3|La0.7Sr0.3MnO3 Thin Films

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The magnetocaloric effect (MCE) of BiFeO3 (BFO)|La0.7Sr0.3MnO3 (LSMO) thin films was investigated via phenomenological model. It is revealed that the values of magnetic entropy change, temperature range covering MCE, change of specific heat, and relative cooling power of BFO|LSMO films decrease dramatically with an increase of BFO. The simulation shows furthermore that these BFO|LSMO films have prospective importance in magnetic refrigerants over a wide temperature range, including cryogenic and room temperatures. The MCE parameters of BFO|LSMO films are significantly larger and comparable with some MCE ones of magnetic materials in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Omote, S. Watanabe, K. Matsumoto, I. Gilmutdinov, A. Kiiamov, and D. Tayurskii, Cryogenics 101, 58 (2019).

    Article  ADS  Google Scholar 

  2. B. Sudakshina, B. Arun, and M. Vasundhara, Phys. Solid State 62, 902 (2020).

    Article  ADS  Google Scholar 

  3. J. Barclay, K. Brooks, J. Cui, J. Holladay, K. Meinhardt, E. Polikarpov, and E. Thomsen, Cryogenics 100, 69 (2019).

    Article  ADS  Google Scholar 

  4. A. H. El-Sayed and M. A. Hamad, J. Supercond. Nov. Magn. 31, 1447 (2019).

    Article  Google Scholar 

  5. A. V. Shadrin, V. A. Ulitko, and Y. D. Panov, Phys. Solid State 62, 1719 (2020).

    Article  ADS  Google Scholar 

  6. J. H. Belo, A. L. Pires, J. P. Araújo, and A. M. Pereira, J. Mater. Res. 34, 134 (2019).

    Article  ADS  Google Scholar 

  7. R. Kumar, Mater. Today: Proc. 4, 5544 (2017).

    Google Scholar 

  8. E. Zarai, F. Issaoui, A. Tozri, M Husseinc, and E. Dhahri, J. Supercond. Nov. Magn. 29, 869 (2016).

    Article  Google Scholar 

  9. M. A. Hamad, Process. Appl. Ceram. 9, 11 (2015).

    Article  Google Scholar 

  10. M. H. Phan and S. C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).

    Article  ADS  Google Scholar 

  11. M. Bourouina, A. Krichene, N. C. Boudjada, M. Khitouni, and W. Boujelben, Ceram. Int. 43, 8139 (2017).

    Article  Google Scholar 

  12. Y. Xu, U. Memmert, and U. Hartmann, J. Magn. Magn. Mater. 242–245, 698 (2002).

    Article  ADS  Google Scholar 

  13. A. Dhahri, M. Jemmali, E. Dhahri, and M. A. Valente, J. Alloys Compd. 638, 221 (2015).

    Article  Google Scholar 

  14. S. Kamiyama and K. Koike, Braz. J. Phys. 25, 83 (1995).

    Google Scholar 

  15. X. Wang, J. Wu, B. Dkhil, B. Xu, X. Wang, G. Dong, G. Yang, and X. Lou, Appl. Phys. Lett. 110, 063904 (2017).

    Article  ADS  Google Scholar 

  16. A. H. El-Sayed, O. M. Hemeda, M. A. Hamad, and A. M. Mohamed, Eur. Phys. J. Plus 134, 227 (2019).

    Article  Google Scholar 

  17. M. A. Hamad, O. M. Hemeda, and A. M. Mohamed, J. Supercond. Nov. Magn. 33, 2521 (2020).

    Article  Google Scholar 

  18. K. A. Gschneidner, Jr., V. K. Pecharsky, and A. O. Tsoko, Rep. Prog. Phys. 68, 1479 (2005).

    Article  ADS  Google Scholar 

  19. T. A. Ho, T. D. Thanh, T. O. Ho, M. H. Phan, and S. C. Yu, J. Appl. Phys. 117, 17A724 (2015).

  20. F. Issaoui, E. Dhahri, and E. K. Hlil, J. Low Temp. Phys. 200, 1 (2020).

    Article  ADS  Google Scholar 

  21. M. G. Zavareh, C. S. Mejía, A. K. Nayak, Y. Skourski, J. Wosnitza, C. Felser, and M. Nicklas, Appl. Phys. Lett. 106, 071904 (2015).

    Article  ADS  Google Scholar 

  22. G. Liu, G. Yan, and J. Yu, Int. J. Refrig. 110, 106 (2020).

    Article  Google Scholar 

  23. E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.‑L. Tamarit, S. Pramanick, S. Majumdar, S. Yüce, B. Emre, C. Frontera, and L. Mañosa, Acta Mater. 96, 324 (2015).

    Article  ADS  Google Scholar 

  24. S. El Kossi, J. Dhahri, and E. K. Hlil, RSC Adv. 6, 63497 (2016).

  25. J. A. Turcaud, A. M. Pereira, and L. F. Cohen, Phys. Rev. B 91, 134410 (2015).

    Article  ADS  Google Scholar 

  26. C. Romero-Muñiz, J. J. Ipus, J. S. Blázquez, V. Franco, and A. Conde, Appl. Phys. Lett. 104, 252405 (2014).

    Article  ADS  Google Scholar 

  27. H. Gharsallah, M. Jeddi, M. Bejar, E. Dhahri, and E. K. Hlil, Appl. Phys. A 125, 541 (2019).

    Article  ADS  Google Scholar 

  28. Y. Yi, L. Li, K. Su, Y. Qi, and D. Huo, Intermetallics 80, 22 (2017).

    Article  Google Scholar 

  29. M. Jeddi, H. Gharsallah, M. Bekri, E. Dhahri, and E. K. Hlil, Phase Trans. 93, 311 (2020).

    Article  Google Scholar 

  30. A. Molinari, H. Hahn, and R. Kruk, Adv. Mater. 30, 1703908 (2018).

    Article  Google Scholar 

  31. J. Khelifi, M. Nasri, and E. Dhahri, J. Supercond. Nov. Magn. 29, 2559 (2016).

    Article  Google Scholar 

  32. E. Bose and S. Pal, J. Supercond. Nov. Magn. 30, 1899 (2017).

    Article  Google Scholar 

  33. R. Ade and R. Singh, J. Supercond. Nov. Magn. 31, 1403 (2018).

    Article  Google Scholar 

  34. A. Asamitsu, Y. Moritomo, Y. Tomika, T. Arima, and Y. Tokura, Nature (London, U.K.) 373, 407 (1995).

    Article  ADS  Google Scholar 

  35. M. Hsini, S. Hcini, M. Boudard, and S. Zemni, J. Supercond. Nov. Magn. 31, 81 (2018).

    Article  Google Scholar 

  36. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science (Washington, DC, U. S.) 264, 413 (1994).

    Article  ADS  Google Scholar 

  37. M. A. Hamad, J. Supercond. Nov. Magn. 31, 337 (2017).

    Article  Google Scholar 

  38. A. M. Ewas and M. A. Hamad, Ceram. Int. 43, 7660 (2017).

    Article  Google Scholar 

  39. Q. Zhou, M. Dai, R. Wang, L. Jin, S. Zhu, L. Qian, Y. Wu, and J. Feng, Phys. B (Amsterdam, Neth.) 391, 206 (2007).

  40. J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E. M. Choi, and J. L. MacManus-Driscoll, Nano Lett. 17, 2506 (2017).

    Article  ADS  Google Scholar 

  41. M. C. Ramírez-Camacho, C. F. Sánchez-Valdés, J. J. Gervacio-Arciniega, R. Font, C. Ostos, D. Bueno-Baques, M. Curiel, J. L. Sánchez-Llamazares, J. M. Siqueiros, and O. Raymond-Herrera, Acta Metall. 128, 451 (2017).

    Google Scholar 

  42. M. J. Calderón, S. Liang, R. Yu, J. Salafranca, S. Dong, S. Yunoki, L. Brey, A. Moreo, and E. Dagotto, Phys. Rev. B 84, 024422 (2011).

    Article  ADS  Google Scholar 

  43. S. Singh, J. T. Haraldsen, J. Xiong, E. M. Choi, P. Lu, D. Yi, X. D. Wen, J. Liu, H. Wang, Z. Bi, P. Yu, M. R. Fitzsimmons, J. L. MacManus-Driscoll, R. Ramesh, A. V. Balatsky, J. X. Zhu, and Q. X. Jia, Phys. Rev. Lett. 113, 047204 (2014).

    Article  ADS  Google Scholar 

  44. M. A. Hamad, Phase Trans. 85, 106 (2012).

    Article  Google Scholar 

  45. E. Sellami-Jmal, A. Ezaami, W. Cheikhrouhou-Koubaa, M. Koubaa, and A. Cheikhrouhou, J. Supercond. Nov. Magn. 30, 489 (2017).

    Article  Google Scholar 

  46. J. A. Schneeloch, Z. Xu, J. Wen, P. M. Gehring, C. Stock, M. Matsuda, B. Winn, G. Gu, S. M. Shapiro, R. J. Birgeneau, and T. Ushiyama, Phys. Rev. B 91, 064301 (2015).

    Article  ADS  Google Scholar 

  47. H. M. Nguyen, D. H. Manh, L. V. Hong, N. X. Phuc, and Y. D. Yao, J. Korean Phys. Soc. 52, 1447 (2008).

    Article  ADS  Google Scholar 

  48. X. Kong, J. Wang, Z. Zou, F. Long, and Y. Wu, J. Supercond. Nov. Magn. 31, 373 (2018).

    Article  Google Scholar 

  49. M. A. Hamad, Mater. Lett. 82, 181 (2012).

    Article  Google Scholar 

  50. A. A. Amirov, I. I. Makoed, Y. A. Chaudhari, S. T. Bendre, D. M. Yusupov, A. S. Asvarov, N. A. Liedienov, and A. V. Pashchenko, J. Supercond. Nov. Magn. 31, 3283 (2018).

    Article  Google Scholar 

  51. M. A. Hamad, J. Supercond. Nov. Magn. 26, 449 (2013).

    Article  Google Scholar 

  52. A. D. Souza and M. Daivajna, J. Supercond. Nov. Magn. 33, 1781 (2020).

    Article  Google Scholar 

  53. A. H. El-Sayed and M. A. Hamad, J. Supercond. Nov. Magn. 31, 1895 (2018).

    Article  Google Scholar 

  54. M. A. Hamad, J. Therm. Anal. Calorim. 115, 523 (2014).

    Article  Google Scholar 

  55. M. A. Hamad, J. Supercond. Nov. Magn. 27, 263 (2014).

    Article  Google Scholar 

  56. M. A. Hamad, O. M. Hemeda, and A. M. Mohamed, J. Supercond. Nov. Magn. 33, 2753 (2020).

    Article  Google Scholar 

  57. M. A. Hamad, J. Supercond. Nov. Magn. 26, 3459 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hamad.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, M.A., Hemeda, O.M., Alamri, H.R. et al. BiFeO3 Layer Thicknesses Effect on Magnetocaloric Effect in BiFeO3|La0.7Sr0.3MnO3 Thin Films. Phys. Solid State 63, 709–713 (2021). https://doi.org/10.1134/S1063783421050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050085

Keywords:

Navigation